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Abstract

This note presents the package of numerical calculation programs for the valuation
of American-type options using the GAUSS code which is one of the most popular
program languages among economists and econometricians. The package includes the
valuation of American-type put options on securities, the termm structure model, and
American-type option-embedded bonds. While a part of the program package is in-
cluded in hard copies in the final section, the entire package is freely available in the
web site.



1 Introduction

Numerical calculation methods play a vital role in the derivation of pricing of options and
interest-derivatives, in particular American-type and exotic options. Meanwhile the idea
of American-type options has recently been applied to investment theory (see Dixit and
Pindyck [2]), and become an essential concept for both finance theory and macroeconomics.
This note presents GAUSS codes for the numerical calculation of American-type options and
explains how to use these codes.

While these codes presented here are the by-products from our completed and progressing
projects including Miyazaki and Saito [6], they may serve not merely as a technical appendix
for our paper, but also for the following purposes. First, our package includes the calculation
codes for standard option pricing and term structure problems such that they may be used
as concrete numerical examples for advanced undergraduate and graduate courses. Second,
with minor modifications, these codes are applicable to a wide range of option pricing and
investment decision problems. Third, our programs are written in the GAUSS code which is
one of the most popular matrix program languages among economists and econometricians.
In this sense, our program package is complementary to that using the C language (Dullie
(3]) or the Basic language (Kijima et al. [5]).

This note is organized as follows. Section 2 demonstrates the numerical algorithm for
the valuation of American-type options using the finite-difference method. Our examples
include American-type put options on securities (Karatzas [4]), the term structure model
{(Cox, Ingersoll and Ross [1] and Vacisek [7]), and American-type option-embedded bonds
(Miyazaki and Saito [6]). Section 3 provides the GAUSS codes for the numerical derivation
of American-type options.

2 Finite-Difference Method and American-type Options

2.1 General Formula

Suppose a financial derivative whose price depends on both time ¢ and the value of its
underlying security x(¢). z(1) is characterized by the following Tto process:

de = p(x, 1)dl + o(x, t)dBy,

where p(x,t) is a drift part, o(«, ) is a diffusion part, and B, is a standard Brownian motion.
The above derivative security promises to pay dividends D{z, () at time ¢ and a terminal
value g(x) at time T.

When spot rates are determined by r(a, ), the time ¢ value of the security F{x,t) is
obtained by solving the following Cauchy problem: given real-valued functions r, g, i1, o, #nd
D on R x [0, 7], find a function F : R x [0, T) — R solving the partial differential equation:

OF (x,t) ,0*F(z,1)

1 OF (z,1)
ol §J(£’ ) Ox?

u(x, t)T + D(z,t) = r(x, t)F(x,1), (1)



with the terminal condition:
F(z,T) = g(x). (2)

See Duffie [3] for the detailed derivation and regularity conditions that guarantee the exis-
tence and uniqueness of solutions. -

2.1.1 Finite-difference method

Given the difficulty with obtaining analytical solutions in the field of finance theory, nu-
merical calculation methods frequently play a vital role in finding solutions. Such methods
include the finite-difference method, the lattice method, and the Monte Carlo simulation
method. Our paper [6] adopts the finite-difference method among these, mainly because
this method is fairly convenient for the valuation of American-type options. This subsection
briefly explains the finite-difference method.

The main idea of this method for solving equation (1) given the terminal condition (2)
is to choose grids as follows

{{zity)ie {1,...,N+1},5e{1,..., M +1}},

and to find an approximate solution of (1) given (2) in the form of an N +1x M +1 matrix F
whose (4, j)-element F;; is to be the approximation of F(x;, t;) where &, =0 and 4y 4 = 7.
Z; —x;-1 = Az and £ — ;-7 = Al are constant for all 7,j. Az and At are called the mesh
sizes of grids.

In the literature, either the explicit method, the implicit method, or the Crank-Nicholson
method is employed for the approximation of the above function (1). In what follows, we
describe the Crank-Nicholson method which is the most accurate and stablest among them!.
In this method. the first and second derivatives of F(z,t) are approximated as follows:

OF (x,t) N Fijp— Fij
ot w=wi =t At b
BF(_I,f) ~ l (EHJ — I n Fiyr 41— Fz’—l,j.u)
(’)x T=X; t:f,i - 2 2A$ QAI ’
M ~ l Fiorj—2F i+ Fioyj + Firj+1 = 2Fj 1 + Fiopja
dx? S -9 (A.’I:)2 (A_,L.)‘z .

Substituting these approximations into equation (1) leads to the following expression: for
1l<i<N+1,
aijFior +biiFi + cigFipg = i (3)

at (x;, {;) where

Yi = A \ TR T T AR

'For the other methods, see Kijima et al. [5].




a(zi, ;)2 AL

bi,j = ~1- 2(A’L')2 - T(ﬂfi,tj)At,
At 0'(.’13,', { ‘)2
Cij = E (/L(.’r,', fj) + —m‘ y
hijg = —ai,Fiojn +diiFije = cigFiin + e, ()
(7(1’,', i.j)zAf,
dij = —1+ TaArE
Cij = —D(.’L’i, [,j)AL

Since equation (3) cannot be defined at either ¢ = 1 or N 4 1, the following expression
may be chosen alternatively:

biiFij—ciFey = hig angriFng +0nveiF e = hve (5)

Using concrete examples, we will later explain how to choose the above coeflicients by j, ¢y 4,
h»]’j, bN+],jy CN41,j5 and ’l_,\r.,.[,j.

Given equations (3) and (5), a backward difference equation is obtained for the columus
FI,F‘Q,. ..,F]u+1 of F I)y

AjFj = hy, (6)
with the terminal condition:
Fingr = g(ai), (7)
where A; is the tridiagonal matrix given by
byj ¢j 0 0 O .o 0
az; I)gj C2j 0 0 ot 0
0 as; ’)3]' C3; 0 T 0
4; =1 . ,
0 - 0 0 an,j b[\r‘j CN,j
0 - 0 0 0 anyry basry

and where hj is the vector with d-th element h; ;. Then, the approximated function F;; is
obtained by determining the coefficients in 4 = j for all j.
The above Crank-Nicholson method is summarized as the following steps:

Step 1: Fix Fj4, according to the terminal condition (7).

Step 2: Set j = M.

Step 3: Do the following procedure (Step 4, 5, and 6) until j = 1.

Step 4: Compute 2 from (4) and (5).

Step 5: Compute Fj by solving (6).

Step 6: Reset j = j — 1, and go back to Step 3.

In the above steps, the solution of (6) can be obtained by utilizing the LU decomposition,
which will be described later.



2.1.2 American-type options

This subsection explores additional considerations required by the valuation of American-
type options. The owner of American-type options has the right to receive a payoll Q(zx, f)
at time t. S/he exercises this right whenever the value of not-exercising is dominated by that
of exercising. The value function of an American-type option F before exercising (x > z*(t)
or & < x*(1)) satisfies the partial differential equation (1) with the terminal condition (2),
the value matching condition:

F(a™(t),t) = Q(x"(t), ),
and the smooth pasting condition:

OF (x,1) 00 a, 1)

O a=x*(t) Ox w=r*(t)
In the above case, the numerical algorithm follows:
Step 1: Fix Fy4, according to the terminal condition (7).
Step 2: Set j = M.
Step 3: Do the following procedure (Step 4, 5, 6 and 7) until j = 1.
Step 4: Compute h; from (4) and (5).
Step 5: Compute F] by solving .4]-15]- = h;.
Step 6: Compute Fj by Fi; = max[F, j, Q4 ;)]
Step 7: Reset j = j — 1, and go back to Step 3.

Because the main property of the finite-difference method is to transform states from
continuous variables to discrete ones by making grids, the smooth pasting condition, which
is the consideration of continuity at a critical point, is not considered explicitly in the above
algorithm. Nevertheless, Step 6 in the above algorithm guarantees the smooth pasting
condition in a close approximation.

2.1.3 LU decomposition

Finally, the I.U decomposition is explained as below. Consider an unknown n-vector x of
a sct. of liner equations Ar = y where y is a known n-vector and A is a known and non-
singular n x n matrix. The LU decomposition is a simple, but. powerful algorithm for solving
x without directly inverting matrix A"

The most important property of matrix A is that it has the following tridiagonal structure:

[a, ¢ 0O --- 0 ]
by ag :
A=10 by ay - 0
: Cn-1
0 - 0 by an |



With consideration of the above tridiagonal matrix®, the numerical algorithm is constructed

as follows.
Step 1: Set {u;}l-; as

ciabioy .
U =0 up=0———; 1=2,3,...,n
Ui |

Step 2: Obtain {z;}, by starting z; = y, and calculating

in a forward step of i(i = 2,...,n).

Step 3: Obtain {z;}2, by starting z,, = zn/un and calculating
xi = (2 — Cigp1Xip1 )/ i

in a backward step of i(i = n—1,...,1).

2.2 American-Type Put Options on Securities

As one of classical examples of Amnerican-type options, we present the numerical procedure
for the American-type put options on securities. Suppose that the owner of this options has
the right to sell a security at a constant exercise price i before the option matures at time
T. A spot rate r is constant over time, and security prices S follow the geometric Brownian

motion. Under the risk-neutral (martingale) measure, the security price follows

_{%S" — ,’.dt + 0'(1]3{,1

where ¢ is constant and B3, is a standard Brownian motion.

The value function f of this option is found by solving the following partial differential

equation at the continuation region S > S*(1) (see Karatzas [4].):

f(S,t) | 1 4, ,0%f(S,t) af(S,t)
o T30 o T — /G

with the terminal conditions:
f(S,T) = max[K - S,0],
im f(S,t) =0,
S—o00
i — JCe—T(T=1)
,IS'I—IR) f(Su t) A" )

2Such tridiagonal matrixes frequently appear in the numerical calculation of finance theory.

6



the value matching condition:
F(S*(1),t) = max[K — S*(t),0],
and the smooth pasting condition:
9/(5.1)
95 8§=8(t)

S is transformed as follows, thereby making the range of S a finite interval:

1
.'LT(S) = m, S e [(),OO), (]])

for some « > 0. In this paper, « is chosen such that the initial stock price Sq is centered or
1/(1 + aSp) = 1/2. Inverting (11) leads to

1—=x
: 0,1].
a:z”re(’]

S(z) =

Letting F(t,x) = f{, S(x)), we replace the above conditional partial differential equation
with the following:

OF (x,t O*F(x,t OF (z,t
) Lpw @D | o ?R80 < pis, ), (12)
with
F(x,T) = max[K — (1 — x)/cx,0],
lil}[l)F(;I, 1)y =0,
lim F(z,t) = Ke T4,
T—1
F(z*(t),t) = max[K — (1 — z*())/eez*(1),0],
OF (x,t)
et Sk et =1,
Oz a=x*(t)
where
P(z) = o%*(1 —2)%
Qz) = o’x(1—x)? = rz(l —2).
Under this transformation, the range of z is (0,1], and the following grids are constructed:
{{x,t;) i€ {1,.... N+ 1},5€{1,..., M +1}},
where
={i— 1Az, i=1,...,N+1;, Az = %,
. . T
Li=U—-1DAL, j=1,...,M+1;, At= 7



£y =0, zy = 1, ty = 0, and {y = T. F;; is denoted as F(x; ;). Substituting the
approximate derivatives of F in the previous subsection into (12), we can obtain at (ay, ¢;),
fori=2,...,N,j=1,..., M,

a; Fi_ 15+ b; F it ’—"iFi+1,j = —“iFi—l,j+l + flin.j+1 - ('1Pi+l,j+la

a; :'A_(Q(l) _é))
At

where

bi = —-1-— P(,’L’,)m — T’Al,
At \ L, Plx)

At
& - P(I')‘Z(A.‘r)z

Fij=0and Fyy; = Kexp(—r(T —t;)) are given by the terminal conditions.

Now, we define an M x N-matrix, T = {h;; ; 1,’ ’Q’, as
hij = —aimiFijp+digiFipo — cimiFigpojy, i=1,...,N =1,
hnj; = RKexp(—r(T —t;)),
and an N-tridiagonal matrix, A as
[ [)2 Cy 0 e 0 W
453 b_'; C3 :
4= 0 a, b4 0
: e
| 0 - o 01 |
Given the above notations, the structure of G = {Gy ;12\ N = R A s simplified
as
;"1(; = I].
The j-th column of G, IT is denoted as Gy, I1;.
The numerical calculation of F is summarized as follows:
Step 1: Start with the terminal condition:
Finver = max[K — (1 —a;)/ox;, 0], i=1,....N+1.

Step 2: Set j = M.
Step 3: Do the following procedure (Step 4, 5, 6, 7, and 8) until j = 1.
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Step 4: Compute I1; by the above definition.
Step 5: Compute Gj by solving A(;'j = Hj.
Step 6: Compute G; by

Gij = max|[G,j, max[K — (1 — ziy))/oxig, 0]).
Step 7: Compute Fj; by

Fl,]‘:o, F:i,j:Gi—l,jv 122,,]\74-1

Step 8: Reset j = j — 1, and go back to Step 3.

2.3 Term Structure Model
2.3.1 CIR process

This subsection presents the numerical calculation for the term structure or the pricing of
standard discount bonds. Consider a standard discount bond which pays out one unit of
principal at time 7. A spot rate is assumed to evolve according to the Cox-Ingersoll-Ross
process ([1], hereafter the CIR process):

dr = n(F — r)dt + o\/rdB,,

where 7 and ¢ are constant. Spot rates take the range of [0, 00) under the CIR. process. An
alternative spot rate process (the Ornstein-Uhlenbeck process) will be considered in the next
subsection. _

Given the risk neutrality assumption, the time ¢ value of this discount bond f(r, 1) is
obtained by solving the following diflerential equation:

af(rt) |1 ,0°f(rt) NG A UL Y
BT + i 5,2 +(F =) 5 = rf(rt), (13)
with the terminal conditions:
fr,T)=1, (14)
af(r,t) _of(rn, ) -
T = _ =0, (15)
Jim (1) = 0. (16)

Equation (15) is derived from (13) with # = 0. (16) implies that the bond with sufficient
high spot rate is valueless.
The vield to maturity on the above bond 7r is represented by

i =~ 0g(J (15, 0)), (17)
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where g is the initial spot rate.
As in the case of American-type put options on securities, the following transformation
is made for the process of r(t) for making state variables move in a finite interval:

x(r) =

for some a > 0. Let F(t,z) = f(¢,r(x)). Hence, the above partial differential equation (13)
is replaced with

r(z
1+ ar’ ax

OF(z,t) 1 O?F(z,1) OF (z,t)
———+ -P(o)——— ——— = R(a)F(x, ! |
28 4 SPa) =5 5+ Qla) o = R(x)F(a, 1), (18)
and the above conditions with
F(e,T)=1
OF(z,1) OF (z,1) B
o | W T | =0
ll_)ll(l) F(x,t) =0,
where
P(z) = o*az®(l - x), (19)
) o _— . l -z = 1 2+ e a2 ¢
Qz) = {a;( — —7)+§0 (l—.x.)}(m. , (20)
Rz) = —*F.

ax

Choosing the grid setting and the appro:\imate derivatives in the same manner as in the
previous subsection lead to, at (z;,¢;), fori=2,... . N,j=1,..., M,

WGFi o+ 0Fj+ by = —aiFig i+ GF 0 — cFijn,

_ _éi_ P P(x;)
o = 4AJJ< Q) + Ax )’

where

b = —1— P(xi)- (A') — R(z;) AL,
o = —(Q( )+ 52,

Al
d,' = —1+P(.I) (A )2

With i = 1 (z = 0), the spot rate r(¢) is infinite. Hence, one of the terminal conditions
vields
Fl,j = 0, JZ 1,,A[
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Ati=N+1 (z = 1) the following approximation is made:

OF (z,t) Fniiga — Fvg
ol s= =ty - At ’
OF(x,t) ~ Frniij — F]V’j. (21)
Jx - Ax
Given the above approximation, for 7 =1,..., M,
an1 Fng + v Fng; = —Favgg,

where AL Al
i1 = —Q(1)—, byy1 = -1+ Q(1)—.
AN 41 Q( )A.'E N+1 + Q( )A.'L'
An M x N-matrix, H = {h, ;zzll”a', is defined as
hij = —aipmFijn+dipiFip e — g Figege, i=1,...,N -1,
hN,j = _FN+I,j+17

and an N-tridiagonal matrix, A as

[" by ¢ 0 0 7
a3 by 3 :
A=10 a by . 0
. . . x
[ 0 .-+ 0 ant1 by |

.. . i=1,.,N __ T .
Given these notations, the structure of G = {Gi ;152" a = {Figrj}j=1"ar is simplified

as

AG = H.

The j-th column of G, H is defined as G, Hj.
The calculation procedure of F is as follows:

Step 1: Start with the terminal condition:
E,AI+1:1; I=1,,N+]

Step 2: Set j = M.
Step 3: Do the following procedure (Step 4, 5, 6, and 7) until j = 1.
Step 4: Compute H; by the above definition.
Step 5: Compute G5 by solving AG; = H,.
Step 6: Compute Fj by

F]’j:(), F’i,j:Gi—l,j: Z—'Z?.,,]V-l-]

Step 7: Reset j = j — 1, and go back to Step 3.
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2.4 American-Type Option-Embedded Bonds

This subsection presents the numerical procedure for the valuation of put and call options
embedded in standard discount bonds. We here take for example the model of Miyazaki
and Saito [6] that analyzes the Japanese public financial system. On the liability side of this
system, the postal savings account offers put-option-embedded bonds to depositors, while
the asset side has callable loans (call-option-embedded bonds) which allow borrowers to
repay principals prior to maturity. While the setup of this model is discussed in great detail
in Miyazaki and Saito [6], this note mainly explains the numerical procedure for solving this
model. Since the procedure adopted here has common features with those discussed in the
previous subsections (2.2 and 2.3), only differences among these models are emphasized in
this subsection.

2.4.1 Put-option-embedded bonds (postal savings account)

The postal savings account works as a put-option-embedded bond as shown below. On the
one hand, this account offers a ten-year fixed rate deposit. The fixed rate 7 is determined by
min[7yg — 0.005,0.9573], where 7(T = 3,10) is the yield on the T-year discount bond given
by equation (17). On the other hand, in addition to this fixed rate feature, this account
allows depositors to cancel the account prior to ten-year maturity with mild penalty.

Thanks to the above ‘put like’ option, depositors are able to switch the initial contract to
a higher-yield bond contract when spot rates become high enough. Considering the actual
feature of the postal savings account carefully, Miyazaki and Saito [6] assume that depositors
can switch to standard discount bonds prior to maturity, and that depositors have to pay
mild penalty before three years pass since the initial contract was made.

Given the above setup, at the continuation regions r < r*(t), the time ¢ value of the
postal savings, denoted by f(r,1), should satisfy the partial differential equation (13) with
the terminal conditions (14)-(16), the value matching condition:

Fr(),0) = Q1)

where

Q1)

2 .
exp{—7(10 — {)} exp {—4—r"i‘(l. — 3)‘!} . 0<t <3,
45
= exp{-7(10-1¢)}, 3<t<10,
and the smooth pasting condition:

84 (r, 1)

= 0.
ar

r=r*(t)

The specification of €2(t) considers the above-mentioned mild penalty for early (less than
three years) cancellation.

The corresponding algorithm for the valuation of the postal savings account requires
minor modifications of the case of the CIR standard discount bond (Section 2.3) as follows:
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Step 1: Start with the terminal condition:
F‘i,hl+1:11 l=1,,N+1

Step 2: Set j = M.

Step 3: Do the following procedure (Step 4, 5, 6, 7, and 8) until j = 1.
Step 4: Compute IT; by the above definition.

Step 5: Compute GJ- by solving .4Gj = H;.

Step 6: Compute G by G, ; = max[éu,Q(tj)].

Step 7: Compute Fj by

F1‘j=(], F‘,;J=Gi_|'j, 7:2,,N+l
Step 8: Reset j = j -- 1, and go back to Step 3.

2.4.2 Call-option-embedded bonds (callable loans)

The callable loan contract considered here is almost a symmetric case of the postal savings
account. In Miyazaki and Saito [6], the borrowing rate on this loan contract is fixed at the
level of the vield on the ten-year discount bond. Borrowers are allowed to call loans without
any penalty prior to maturity (a ten-year maturity is assumed),

With minor modifications of the model of the postal savings account, it is possible to
numerically value this callable bond. That is, Step 6 in the above algorithm should he
replaced with

Step 6 Compute (7 by G, j = min[(A?i,j, exp(—710(10 —1;))] where 714 is the ten-year
bond yield.

2.5 OU process

Finally, we consider the case of the bond valuation for an alternative spot rate process. That
is, spot rates evolve according to the Ornstein-Uhlenbeck process (hereafter the OU process):

dr = n(F — r)dt + odB,.

One problem with the OU process is that spot rates may be negative®. However, negative
spol rates can be ruled out by replacing equation (15) with

8/ (r,1)

AN =0,

o

r=0

3Using the OU process, Vasicek derives the term structure of interest rates in a closed form allowing for
negative spot rates.

13



in the case of OU process. This condition may be regarded as the ‘smooth pasting like’
condition at r=0.

Considering the above condition, the numerical procedure has to make two modifications
to that with the CIR process. First, the expression (19) and (20) are replaced with

P{z) = o’a’z?

11—z . 1, .
Q) = {77 ( L -F) ar’ + 30202:1:"} .

oz Z

Second, the terminal condition at r = 0 is formulated as follows. Noting x = 1/(1 + ar)
and F(x,t) = f(r,t), the terminal condition at r = 0 implies

OF (2,1)

oz

x=1

Hence, for j =1,..., M,
FN,j - FN+]_]' =0

is derived from (21). Consequently, the matrix H and A in the CIR case are replaced with

hij = —ainFijm+digFipio — Gl t=1,.. N -1,
hN’j = 0,
and -
{ b, ¢o 0 --- 0O
az by 3 :
A= 0 a4 by . 0O
: L en
0 - 0 1 -1

Utilizing the algorithm of the CIR case with the above modifications, we can obtain the
numerical solution F with the OU case.

3 Code Examples

This section presents the GAUSS code package for the asset pricing models described above:
American-type put options on sccurities, American-type option-embedded bonds with the
CIR process, and American-type option-embedded bonds with the OU process.

This package consists of the following codes:

main_bs.prg, main_cir.prg, main_ou.prg,
bs_put.prc, cirm.prc, cir_all.prc, ou.m.prc¢, ou_all.prec,
lu.prc.

14



Code “+.prg” is a main program of each example, and Code “x.prc” is a subroutine pro-
cedure called by main programs. lu.prc is the procedure of the LU decomposition which is
utilized in all examples.

Among the main programs, main_bs.prg is the program that calculates the value of
American-type put options on sccurities. main_cir.prg is the main program that calculates
the value of discount bonds with options (put/call) when spot rates follow the CIR, while
main_ou.prg regards the case for the OU process. The latter two programs also include the
term structure models or the valuation of standard discount bonds.

The dependency among the above codes is summarized as follows:

main_bs.prg ¢ 1lu.prc¢ -+ bs_put.prg,
main_cir.prg < lu.prc + cirm.prc + cir_all.prg,
main_ou.prg ¢ lu.prc + oum.prc + ou_all.prc.

This section includes only main_bs.prg and main_cir.prg in hard copies in order to save
the manuscript space. Other related programs as well as the codes listed here are available
in the following web site:

\ http://prof .mt.tama.hosei.ac.jp/ miya_ken/research.htm l

One minor change required for running the above codes is that d: \gaus;s\gwork\op'clons\1
must be replaced with a chosen working directory®.

Anyone may use or modify freely the above codes with appropriate acknowledgement
and citation. While the authors have paid every possible attention in writing these codes,
they do not have any responsibility for potential problems caused by the codes.

1These terms are found in #include phrase of main_bs.prg and main_cir.prg.
?After running these codes, the error message “Math coprocessor exceptions: Division by zero” always
appears. This message, however, has nothing to do with any numerical results.



3.1 lu.prc

/33 A oo oK ok ok R ok koK
*LU decomposition#*
P Ty
proc lu_decomp(a,b,c,nn);
local i,u;
u=zeros(nn,1);
ul1l=al1];
i=2;
do until i>nn;
ulil=alil-bli-1)*c[i-1]/uli-1];
i=i+l; '
endo;
retp(u);
endp;

proc lucalc(a,b,c,u,h,nn);
local i,y,g;
y=zeros(nn,1);
g=zeros(nn,1);
y[11=h[1];
i=2;
do until i>nn;
y[il=h[i]l-bli-11*y[i-1]/uli-1];
i=i+1;
endo;
glnnl=y[nn]/ulnn];
i=nn-1;
do until i<i;
glil=(y[il-c[il*g[i+1]) /ulil;
i=i-1;
endo;
retp(g);
endp;
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3.2 bs_put.prc

o A o e o ok o ok

*%x bs_put.prc **x

LRI L T T Yy

/*grid setting*/

a=zeros(n+1,1);

b=zeros(n+1,1);

c=zeros(n,1);

d=zeros(n,1);

i=2;

do until i>n;
p=sigma~2*(1-x[i]) ~2*x[i]"~2;
q=sigma 2+x[i]* (1-x[i])-r*x[i1*(1-x[i]);
alil=delta_t*(-q+p/delta_x)/(4*delta x);
bli]=-1-p*delta.t/(2*deltax"2)-r+delta.t;
clil=delta t*(q+p/delta x)/(4*delta x);
d[il=-1+p*delta_t/(2+delta x"2);
i=i+1;

endo;

bln+1]=1;

aa=zeros(n,1);

bb=zeros(n-1,1);

cc=zeros(n-1,1);

i=1;

do until i>n-1;
aali]l=b[i+1];
bb(il=ali+2];
cclil=c[i+1];
i=i+1;

endo;

aa[n)=b[n+1];

u=lu_decomp(aa,bb,cc,n);

f =zeros(n+1l,m+1);

fl=zeros(n+1l,m+1);

S_star=zeros(m,1);

/*initial condition*/
i=2;
do until i>n+i;
temp=K- (1-x[i])/(alpha*x[i]);
if temp<0;
temp=0;
endif;
fli,m+1] =temp;
f1[i,m+1]=temp;
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i=i+1;
endo;

/*main loop*/
J=m;
do until j<1;
h =zeros(m,1);
hi=zeros(n,1);
i=1;
do until i>n-1;
hlil=-ali+1]*f[i,j+1]+d[i+1])*£[i+1,j+1]-c[i+1]*f[i+2,j+1];
hi[i]l=-ali+1]*£f1[i,j+1]+d(i+1)*£f1[i+1,j+1]-c[i+1])*£1[i+2,j+1];
i=i+l;
endo;
h[n]=K*exp(-r*(TT-t[j1));
hi[n]=K*exp(-r*(TT-t[j1));
g =lu_calc(aa,bb,cc,u,h,n);
gl=lu_calc(aa,bb,cc,u,hl,n);
£[2:n+1,j)=g;
i=n+1;
do until i<2;
if gili-1]1 .< v[il;
S_star(j1=5S[i];
gili-1]=v[i];
endif;
i=i-1;
endo;
f1[2:n+1,j]=g1;
ARE
endo;
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3.3 main_bs.prg

[EREEAARRRERERE
* main_bs.prg *
HERRERRERERRRR ]
/* variable setting */
new;
50=100;
K=100;
alpha = (2-1)/50;
r=0.05;
sigma=0.25;
n=300;
deltax = 1/n;
x = seqa(0,deltax,n+1);
/%8S = (1-x)./(alphaxx);*/
$=2:
do until i>n+1;
ssli] = (1-x[il)/(alpha*x[i]);

i=i+1;

endo;
SS[1]=2*SS[2];
tt= 1;
uy = 300;
/* unit: year */
m = uy*tt;

delta.t = tt/m;
t = seqa(0,delta t,m+1);
v=zeros(n+1,1);
1i=2;
do until i>n+1;
temp=K-(1-x[i])/(alpha*x[i]);
if temp<0;
temp=0;
endif;
v[i] =temp;
i=i+1;
endo;
/*including LU decomposition procedurex/
#include d:\gauss\gwork\options\lu.prc;
/*including sub numerical caluculation procedurex*/
#include d:\gauss\gwork\options\bs_put.prc;
S_star = S_star|K;
VEET TR L
* Jutput **
* ok kR kR kK [
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print "= =

print "S(0) = ";;S80;

print "K = ";;K;

print "r = ";;r;

print "sigma = ";;sigma;

print '"m = ";;n;

print "m = ";;m;

print " ==== == ========== "
print "Value of European put option = ";;f[floor(n/2)+1,1];
print "Value of American put option = ";;f1{floor(n/2)+1,1];
print '========= === = =";

JRERE Rk kK

*Qutput (graphics)**

Aok kK ok kK Rk ok ok

/* Number of Passing Years for graph.prg #*/
/*passy=0;*/

passy=0;

ay=passy;

ay=uy*ay+1;

fg = f1[.,ayl"f[.,ayl;

library pgraph;

graphset;

_pdate="";

plwidth=10;

xlabel("stock price");

ylabel("option value");

title("American put option value

(" $+ ftos((10-passy),"%*.*1£f",2,0)

$+''years remaining, initial price at "

$+ ftos(SO,"%*.*1f",1,2)$+')");

_plegstr = "American option\00OEuropean option*;
_plegctl = 2757574;
xy(SS[floor(n/4) :n+1] ,fglfloor(n/4):n+1,.1);
graphset;

xlabel("passing years");

ylabel("critical stock price");
title("Critical Values of American Options
(initial price at " $+ ftos(SO,"%*.*1f",1,2)$+")");
xy(t,S_star);

end;

stop;
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3.4 cir_m.prc

VAL T T T

**% Cirm.prc *xx

Aok A KRk Rk Rk Rk /

/*grid settings/

a=zeros(n+1,1);

b=zeros(n+1,1);

c=zeros(n,1);

=zeros(n,1);

i=2;

do until i>n;
p=sigma”2+alpha*x[i] 3% (1-x[i]);
q=alphaxx[i]“2*(etax((1-x[i])/(alpha*x[i])-r.bar)+sigma~2*(1-x[i])/2);
r=(1-x[i])/(alpha*x[i]);
alil=delta_t*(-q+p/delta x)/(4*delta x);
b[i]=-1‘p*de1ta_t/(2*de1ta.x”2)-r*deltain
c[il=delta_t*(q+p/delta x)/(4*deltax);
d[i]=-1+p*delta_t/(2xdelta x"2);
1=i+1; '

endo;

g=-eta*alpha*r bar;

a[n+1]=-g*delta_t/delta x;

b[n+1]=-1+q*delta_t/deltax;

aa=zeros(n,1);

bb=zeros(n-1,1);

cc=zeros(n-1,1);

i=1;

do until i>n-1;
aalil=b[i+1];
bblil=ali+2];
cclil=c[i+1];
i=i+1;

endo;

aa[n]=b[n+1];

u=lu.decomp(aa,bb,cc,n);

f=zeros(n+1,m+1);

/*initial conditionx*/

f[.,m+1]=ones(n+1,1);

/*main loop*/

J=m;

do until j<i;
h=zeros(n,1);
i=1;
do until i>n-1;
hliJ=-alit1]«f[i,j+1]+d{i+10#£ [i+1, j+1]-c[i+1]*£ [i+2,j+1];



i=i+1;
endo;
h(n]=-f[n+1,j+11;
g=lu_calc(aa,bb,cc,u,h,n);
f[2:n+1,j]=g;
j=i-1;
endo;
ri=-1ln(f[floor(n/2)+1,1])/tt;



3.5 cir_all.prc

/3403 ok o K koK K
** cir_all.prc *x»
[TITIITITIITIT IS S
/*grid setting*/
a=zeros(n+1,1);
b=zeros(n+1,1);
c=zeros(n,1);
d=zeros(n,1);
i=2;
do until i>n;
p=sigma~2+alpha*x[i] “3*(1-x[i]);
g=alpha*x[i] "2 (eta*((1-x[i])/(alpha*x[i])-r.bar)+sigma~2*(1-x[i])/2);
r=(1-x[i]1)/(alpha#*x[i]);
a[il=delta t*(-q+p/deltax)/(4*deltax);
b[il=-1-p*delta_t/(2*delta x"2)-r*deltat;
c[i]l=delta t*(q+p/delta x)/(4*deltax);
d[i])=-1+p*delta_t/(2*deltax"2);
i=i+l;
endo;
q=-eta*alpha*r bar;
a[n+1]=-q*delta_t/delta x;
bn+l]=-1+g*delta_t/delta x;
aa=zeros(n,1);
bb=zeros(n-1,1);
cc=zeros{(n-1,1);
i=1;
do until i>n-1;
aali]=b[i+1];
bbl(i]l=al[i+2];
cclil=cli+1];
i=i+1;
endo;
aal[n]=b[n+1];
u=lu_decomp{aa,bb.cc,n);
£ =zeros(n+l,m+1);
fil=zeros(n+l,m+1);
f2=zeros(n+1,m+1);
ffi=zeros(n+l,m+1);
ff2=zeros(n+1,m+1);
r_starl=zeros(m,1);
r_star2=zeros(m,1);
/*initial condition*/
f[.,m+1] =ones(n+1,1);
fi[.,m+1]=ones(n+1,1);



f2[.,m+1]=ones(n+1,1);
ffi[.,m+1]=ones(n+1,1);
ff2[. ,m+1]=ones(n+1,1);
/*main loop*/
j=m;
do until j<i;
h =zeros(n,1);
hi=zeros(n,1);
h2=zeros(n,1);
i=1;
do until i>n-1;
h{i}=-ali+1]*£f[i,j+1]1+d[i+1]1*£f[i+1,j+1]-c[i+1]#£[i+2,j+1];
hilil=-a[i+1]*f1[i,j+1]+d[i+1]*£f1[i+1,j+1])-c[i+1]*F1[i+2,j+1];
n2[il=—ali+1]#£2[i,j+1]+d[i+1]#£2[i+1,j+1]-c[i+1]*£2[i+2,j+1];
i=i+1;
endo;
h[n]=-f[n+1,j+1];h1[n]=-f1[n+1,j+1];h2[n)=-£f2[n+1,j+1];
g =lu.calc(aa,bb,cc,u,h,n);
gl=lu_calc(aa,bb,cc,u,hi,n);
g2=lu_calc(aa,bb,cc,u,h2,n);
f[2:n+1,jl=g;
f£f1[2:n+1,j]=g1;
f£2[2:n+1,j]=¢g2;
i=2;
do until i>n+1;
if gili-1] .<= v1[jl;
rstarl[jl=rr(i];
gili-1)=vi[j];
endif;
i=i+1;
endo;
i=n+1;
do until i<2;
if g2[i-1]1 .>= v2[jl;
rstar2[jl=rr[i];
g2li-1]=v2[j];
endif;
i=i-1;
endo;
f1[2:n+1,j]l=g1;
f2(2:n+1,3]=g2;
i=3-1s
endo;



3.6 main_cir.prg

/o kK KR K X
* main.cir.prg *
ok okok ok kKR Rk kokk
/* variable setting */

new;
r0=0.05;
uy = 52;

/* unit: year */
/* 62 grids = 1 year */

eta = 0.0514;
sigma = 0.0492;
r.bar = 0.0499;
alpha = (2-1)/r0;
n=100;

deltax = 1/n;
x = seqa(0,delta.x,n+1);
/+#rr = (1-x)./(alpha*x);*/
i=2;
do until i>n+1;

rr[i] = (1-x[i])/(alpha*x[i])};

i=i+1;

endo;
rr[1]=2*rr[2];
/********#t********‘**t#**t**ttt**tt*tt**
including LU decomposition procedure
returns procedures:
lu_decomp, lu_calc
********#****‘******it*t***t***********/
#include d:\gauss\gwork\options\lu.prc;
/* derivation of interest of 3 year discount bond */
tt= 3;
m = uy*tt;
deltat = tt/m;
t = seqa(0,deltat,m+1);
/************************************************
including sub numerical caluculation procedure
returns a value: ri
rl == annual yield of 3 year discount bond
******#*******#******t*******l****#t*****#*****/
#include d:\gauss\gwork\options\cirm.prc;
r 03=ri;
r.a=r1#0.95;
/* derivation of interest of 10 year discount bond */
tt= 10; ‘



m = uy*tt;
delta_t = tt/m;
t = seqa(0,delta_t,m+1);
/********##**#t**#***#**t********************#***
including sub numerical caluculation procedure
returns a value: ri
r1 == annual yield of 10 year discount bond
#**t#**#***#**#***********#t****************t##/
#include d:\gauss\gwork\options\cirm.prc;
r_10=r1;
rb = 1r1-0.005;
if ri<0;
r1=0;
print "Warning !! yield too low!!";
endif;
/*determination of r_tildex/
if r.a < rb;
r_tilde=r._a;
else;
r.tilde=r.b;
endif;
/* r_tildel(put) */
r_tildel=r_tilde;
/* r_tilde2(call) */
r_tilde2=r_10;
vi=zeros(m+1,1);
v2=zeros(m+1,1);
i=1;
do until i>3*uy+i;
rtildel p=r_tildel-(2/45)*r_tildel*(t[i]-3)"2;
vi[il=exp(-r_tildel*tt)*exp(r_tildel p*t[i]);
r_tilde2 p=r_tilde2;
v2[i]=exp(-r_tilde2+*tt)*exp(r-tilde2_p*t[il);
i=i+1;
endo;
do until i>m+1;
vil[il=exp(-r_tildel*(tt-t[il));
v2[{il=exp(-rtilde2#*(tt-t[il));
i=i+1;
endo;
/t*****************
Output (Parameter) *
M TIIIIILITIIITII ST Y4

print 's==ss==s======s======== "
print "r(0) = ";;r0;
print "eta = ";;eta;



print "sigma = ";;sigma;

print "r_bar = ";;r_bar;

print "r(3 years) = ";;r_03;

print "r(10 years)= ";;r_10;

print "r_tilde = ";;r_tilde;

print '"n = ";;n;

print "= = === ====";
/*re-setting*/

tt=10;

m = uy*tt;

delta_t = tt/m;

t = seqa(0,delta t,m+1);

/4K Kk ok K K

main program

ok kR Rk kKR kxk
/*t*********************t**************************#*
including main numerical caluculation procedure

returns values:

bi

r_starl, f1, ff1 (put)

r_star2, f2, ff2 (call)
*****#******************t**#***********************/
#include d:\gauss\gwork\options\cir_all.prc;

r_stari = r_starllr.tildel;

r.star2 = r_star2|r._tilde2;

/***********#******‘********

Output (Numerical Solution) =
#***************************/

print "Value of bond/loan without optioms ";;f[floor(n/2)+1,1];
print "Value of put-embedded bond ";;fi[floor(n/2)+1,1];
print "Value of callable loan ";;f2[floor(n/2)+1,1];
print " = =======";
/30K Kk K KK ok Kk K

Output (graphics)

***********#****/

/* Number of Passing Years for graph.prg */
/*passy=0;*/

passy=3;
ay=passy;
ay=uy#*ay+1;

fg = f[.,ayl;
fig = f1[.,ayl;
f2g = £2[.,ayl;

ff = fg"flgf2g;
library pgraph;
graphset;
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_pdate="";

plwidth=10;

xlabel ("spot rate");

ylabel("bond price");

title("Prices of Option-Embedded Bonds and Loans
(" $+ ftos((10-passy),"%*.*x1f",2,0)$+

" years remaining, initial rate at " $+
ftos(r0,"%*.*1£f",1,2)$+", 1.00 at maturity)");
-plegstr =

"bond/loan without options\000put-embedded bond\000call-embedded loan";
plegctl = 27567171,

xy(rr[floor(n/4):n+1] ,ff[floor(n/4):n+1,.1);
graphset;

_pdate="";

-plwidth=10;

xlabel ("passing years");

ylabel("critical spot rate");

title("Critical Values of American Options
(initial rate at " $+ ftos(rO,"¥%*.»1f",1,2)$+")");
_plegstr = :

"put-embedded bond\OOOcall—embedded loan";
Pplegctl = 2757473;

xy(t,r_starl”r_star2);

end;

stop;
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