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Abstract
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1 Introduction
Heterogeneous-agent New Keynesian (HANK) models have profoundly influenced
contemporary macroeconomics (Kaplan and Violante, 2018). The HANK literature
addresses critical macroeconomic issues, such as monetary policy transmission, credit
policies the development of automatic stabilizers and fiscal policy. Economists have
employed HANK models to comprehend financial crises, such as the Great Recession
of 2007–2009. Much of this literature relies on numerically solved calibrated models,
resulting in ambiguity regarding how the results relate to broader economic structures.

To interpret the HANK model’s numerical outcomes, researchers frequently depend
on the two-agent New Keynesian (TANK) model’s results. Debortoli and Galí (2024)
show that a well-configured TANK model effectively captures the overall impact of
the HANK model even without accounting for individual income variability. Likewise,
Bilbiie’s analytical studies (2024, 2020b, 2008) employ TANK and THANK (i.e.,
tractable HANK) models to demonstrate that the ratio of hand-to-mouth households
facing liquidity constraints plays a significant role in the general equilibrium elasticity
of intertemporal substitution (GE-EIS), marginal propensity to consume (MPC), and
an objective function for the optimal monetary policy objective function. However,
Bilbiie’s TANK models and most HANK models adopt separable utility functions that
lack complementarity between consumption and hours worked.

Empirical evidence supports complementarity between consumption and hours. Hall
(2009) posits that marginal utility increases when an individual transitions from
unemployment to employment or works longer hours. Further, he reviews evidence
supporting complementarity, such as the consumption retirement puzzle by Aguiar
and Hurst (2005). Bilbiie’s sequential studies (2020a, 2011, 2009) employ general
non-separable preferences to generate positive fiscal multipliers on consumption and,
thus, resolve the problem of low elasticity of intertemporal substitution combined with
low income-wealth effects. However, Bilbiie (2020a) considers only representative-agent
New Keynesian (RANK) models; as Bilbiie (2020a) suggests, in a non-distorted RANK
model, monetary policy’s impact remains unchanged despite complementarity.
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A TANK economy may undergo changes in the impact of monetary policy because of
complementarity. When monetary policy exerts a distinct influence, understanding
its nature becomes essential. A potentially substantial effect would require a com-
prehensive reconstruction of the model. Moreover, in a more realistic HANK model,
insights derived from the TANK model help interpret numerical results. Accordingly, I
analytically examine monetary policy’s impact on the economy by employing a TANK
model with non-separable preferences.

I find that the complementarity between consumption and hours is crucial in three
respects. First, complementarity alters the GE-EIS or the slope of the investment-
savings (IS) curve in the TANK model. Second, it influences the MPC or the slope of the
consumption function. Specifically, with countercyclical inequality, procyclical savers’
consumption, and a sufficiently large income effect, complementarity amplifies the effect
on monetary policy. Third, it crucially affects the optimal monetary policy’s objective
function in the TANK model. These findings challenge the separable preference
paradigm in HANK literature and provide analytical foundations for central banks to
recalibrate reaction functions based on household consumption-labor interactions and
inequality dynamics.

Relatedly, Auclert et al. (2023)’s study incorporates complementarity in the HANK
model and identifies empirical challenges that the model struggles to explain, even
with a general utility function. However, they demonstrate that introducing wage
rigidity can resolve these issues even with a separable utility function. Their utility
functions differ from the ones used in this study. Although their conclusions rely on
numerical calculations, my research is entirely analytical.

The remainder of this paper is organized as follows: Section 2 elucidates the proposed
TANK model with non-separable preferences. I explain the non-separable utility
function and, then, briefly outline the TANK model. Section 3 presents the main
results and examines how complementarity impacts the NK-IS curve, consumption
function, and objective function of the optimal policy. Section 4 concludes.
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2 Model Economy
The proposed model closely resembles TANK models (Bilbiie, 2024, 2020b, 2008),
except for the period utility function’s shape. I first describe the utility functions and,
then, provide an overview of the model as well as the set of equations derived thereof.
All variables in the model include a time index in general. The absence of a time
index indicates a steady state. The log deviations from steady states are denoted by
lowercase letters, except for dividends, which are represented by 𝑑𝑡 ∶= 𝐷𝑡/𝑌.

2.1 Non-Separable Utility function

Following Bilbiie (2020a), the period utility function in the model is as follows:

𝑈(𝐶, 𝑁) = 11 − 𝜉/(1 − 𝛾) (𝐶1−𝛾1 − 𝛾 − Ξ𝑁1+𝜑1 + 𝜑 )1−𝜉/(1−𝛾) ,
where 𝐶 is consumption, 𝑁 is hours worked, and Ξ is the parameter that adjusts the
steady state of the hours worked. The parameters 𝛾, 𝜑, and 𝜉 satisfy the following
relationship: 𝛾 = −𝑈𝐶𝐶𝐶𝑈𝐶 + 𝑈𝐶𝑁𝐶𝑈𝑁 ,𝜑 = 𝑈𝑁𝑁𝑁𝑈𝑁 − 𝑈𝐶𝑁𝑁𝑈𝐶 ,𝜉 = −𝑈𝐶𝑁𝐶𝑈𝑁 [1 + 1 − 𝛾1 + 𝜑 𝑁𝐶 𝑈𝑁𝑈𝐶 ] .
When the wage rate (𝑊𝑡) equals the elasticity of substitution between hours worked
and consumption or 𝑊𝑡 = −𝑈𝑁(𝐶𝑡, 𝑁𝑡)/𝑈𝐶(𝐶𝑡, 𝑁𝑡), the log-linear approximation
is as follows: 𝑤𝑡 = 𝜑𝑛𝑡 + 𝛾𝑐𝑡. (1)

The inverse of 𝜑 represents wage elasticity with respect to constant consumption. As
noted in Bilbiie (2020a), this is not Frisch elasticity or wage elasticity with constant
marginal utility. Parameter 𝛾 is the (relative) income effect on the labor supply and

4



does not necessarily equal the reciprocal of the elasticity of intertemporal substitution
(EIS).

I assume that 𝛾 ≥ 0 and 𝜑 > 0. Then, The log-linear approximation of the marginal
utility for consumption (𝑀𝑈𝑡 ∶= 𝑈𝐶) is𝑚𝑢𝑡 = −(𝛾 + 𝜅)𝑐𝑡 + 𝑈𝐶𝑁𝑁𝑈𝐶 𝑛𝑡= −(𝛾 + 𝜅)𝑐𝑡 − 𝜅𝑁𝐶 𝑈𝑁𝑈𝐶 𝑛𝑡,𝜅 ∶= −𝑈𝐶𝑁𝐶𝑈𝑁 = 𝜉 [1 + 1 − 𝛾1 + 𝜑 𝑁𝐶 𝑈𝑁𝑈𝐶 ]−1 .
Bilbiie (2020a) defines parameter 𝜅 as the degree of complementarity between con-
sumption and hours worked. When 𝜅 < 0, the utility has substitutability between 𝐶
and 𝑁.

When the economy is not distorted in the steady state, all labor income is used for
consumption (−(𝑁/𝐶)(𝑈𝑁/𝑈𝐶) = 𝑊𝑁/𝐶 = 1). In this economy,𝑚𝑢𝑡 = −𝛾𝑐𝑡 − 𝜅(𝑐𝑡 − 𝑛𝑡),𝜅 = 𝜉(1 + 𝜑)𝜑 + 𝛾 .
Clearly, 𝜅 = 0 ⇔ 𝜉 = 0, and 𝜅 is proportional to 𝜉. Notably, 𝛾 = 1 implies 𝜉 = 𝜅.
Throughout this study, I assume that the economy is non-distorted. Hereafter, both 𝜅
and 𝜉 are used interchangeably as the degree of complementarity between consumption
and hours worked.

I assume 𝑈 to be concave. With −(𝑁/𝐶)(𝑈𝑁/𝑈𝐶) = 𝑊𝑁/𝐶 = 1, the concavity
condition is 𝜅 ≥ − 𝜑𝛾𝜑 + 𝛾 ⇔ 𝜉 ≥ 𝜑𝛾1 + 𝜑 ⇔ 𝛾 + 1 + 𝜑𝜑 𝜉 ≥ 0. (2)

See Online Appendix for proof. Even in the case of substitutability (𝜅 < 0), concavity
can be established.

This functional form of the utility function nests the constant relative risk aversion-
(CRRA), Greenwood–Hercowitz–Huffman- (GHH), and King–Plosser–Rebelo- (KPR)
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type forms. That is, with 𝜉 = 0, the functional form is reduced to the CRRA-type
one:*1 𝑈(𝐶, 𝑁) = 11 − 𝛾𝐶1−𝛾 − Ξ1 + 𝜑𝑁1+𝜑,
where the degree of complementarity is 0, 1/𝜑 is the Frisch elasticity, and the income
effect (𝛾) is the inverse of the EIS. When 𝛾 = 0, the functional form is reduced to
GHH-type one:*2 𝑈(𝐶, 𝑁) = 11 − 𝜉 (𝐶 − Ξ1 + 𝜑𝑁1+𝜑)1−𝜉 ,
in which the income effect is 0, indicating that the labor supply is determined by the
wage rate alone. When 𝛾 → 1, the functional form is reduced to KPR-type form:*3𝑈(𝐶, 𝑁) = −1𝜉 [𝐶 exp {−Ξ𝑁1+𝜑1 + 𝜑 }]−𝜉 ,
where the income effect is unity, ensuring a balanced growth path.

Using the parameters 𝛾, 𝜑, and 𝜉, this functional form can separately control for the
income effect, wage elasticity, and degree of complementarity.

2.2 Outline of TANK Model

I now proceed to the model descriptions. I consider several features that differ from
those of the standard RANK model. See Online Appendix for the full descriptions.

The model includes two types of households: Type H (hand-to-mouth) and Type S
(saver). The total population is normalized to be 1. The ratio of type H is 𝜆 ∈ [0, 1],
whereas that of type 𝑆 is 1 − 𝜆. Type H households, which are subject to hand-to-
mouth constraints, make optimal labor supply decisions to determine their income.
Their income, denoted by 𝑌 𝐻𝑡 , combines their wage rate (𝑊𝑡), hours worked (𝑁𝐻𝑡 ),
and any transfers (𝑇 𝑅𝐻𝑡 ). The remaining type S consumers receive labor income
and profits from illiquid shares after taxes. The standard intratemporal optimality

*1 The origin of this appraisal is that this function has a constant relative risk aversion.
*2 This functional form was first proposed by Greenwood et al. (1988).
*3 This functional form was first proposed by King et al. (1988).
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condition determines the optimal number of hours worked, assuming identical elasticity
across agents. This condition derives the aggregate labor supply function given by (1).

The model has the following two types of firms: final and intermediate good firms. The
final goods market is perfectly competitive, whereas the intermediate goods market is
monopolistically competitive. Substitution elasticity among the intermediate goods is
denoted by 𝜓. A intermediate firm 𝑗 sets the prices of their products, 𝑃 𝐼𝑡 (𝑗), subject
to a quadratic price adjustment cost, as in Rotemberg (1982). The adjustment cost
function*4 is assumed to be 𝜂2 (𝑃 𝐼𝑡 (𝑗) − 𝑃 𝐼𝑡−1𝑃 𝐼𝑡−1 )2 ,
where 𝜂 is the degree of price adjustment, and 𝑃 𝐼𝑡 , the aggregate price level, is equal
to the price of final goods 𝑃𝑡 in a symmetric equilibrium. A subsidy policy of standard
New Keynesian optimal sales is redistributive and taxes the shareholders of firms,
resulting in a full-insurance steady state where the consumption of hand-to-mouth
households (𝐶𝐻) is equal to the consumption of non-hand-to-mouth households (𝐶𝑆).
Log-linearizing around this steady state, firms’ profits vary inversely with real wage,
denoted by 𝑑𝑡 = −𝑤𝑡.

The government implements both fiscal and monetary policies. The fiscal policy
consists of an optimal subsidy policy, as discussed, and a redistribution policy. In
the latter scheme, profits are taxed at rate 𝜏 and the proceeds are rebated lumpsum
to hand-to-mouth households. The monetary policy controls nominal interest rates𝐼𝑁𝑇𝑡 (based on 1) according to the following rule:𝐼𝑁𝑇𝑡 = exp(−𝑚𝑡)𝛽 𝔼𝑡𝐼𝑁𝐹𝐿𝜙𝑡+1, 𝜙 > 1,𝑚𝑡 = 𝜌𝑚𝑡−1 + 𝑒𝑡, 0 < 𝜌 < 1,

*4 Standard NK models typically employ the following price adjustment costs:𝜂2 (𝑃 𝐼𝑡 (𝑗) − 𝑃 𝐼𝑡−1(𝑗)𝑃 𝐼𝑡−1(𝑗) )2 .
Additionally, the log-linearization is identical to that of the Calvo case. When employing this
adjustment cost, the result becomes more complex but remains robust. See Online Appendix
for further details.
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where 𝐼𝑁𝐹𝐿𝑡 = 𝑃𝑡/𝑃𝑡−1 refers to the rates of inflation (based on 1), and 𝑚𝑡 is
a zero-mean AR(1) monetary shock with a zero-mean independent and identically
distributed random variables error 𝜖𝑡.*5

Market clearing in the goods and labor market is summarized as total income 𝑌𝑡 =𝐶𝑡 + (𝜂/2)(𝐼𝑁𝐹𝐿𝑡 − 1)2𝑌𝑡, total consumption 𝐶𝑡 = 𝜆𝐶𝐻𝑡 + (1 − 𝜆)𝐶𝑆𝑡 , and
total hours worked 𝑁𝑡 = 𝜆𝑁𝐻𝑡 + (1 − 𝜆)𝑁𝑆𝑡 . With a full-insurance steady state,𝑌 = 𝐶 = 𝐶𝐻 = 𝐶𝑆 = 𝑁 = 𝑁𝐻 = 𝑁𝑆 = 1, and log-linearizing around this steady
state yields 𝑦𝑡 = 𝑐𝑡, 𝑐𝑡 = 𝜆𝑐𝐻𝑡 + (1 − 𝜆)𝑐𝑆𝑡 , and 𝑛𝑡 = 𝜆𝑛𝐻𝑡 + (1 − 𝜆)𝑛𝑆𝑡 .

With a given aggregate income 𝑦𝑡, logarithmic consumption for each type is𝑐𝐻𝑡 = 𝜒𝑦𝑡,𝑐𝑆𝑡 = 1 − 𝜆𝜒1 − 𝜆 𝑦𝑡 (3)

where 𝜒 ∶= 1 + 𝜑 (1 − 𝜏/𝜆). Parameter 𝜒 denotes the elasticity of type 𝐻’s consump-
tion, which increases in 𝜆 and decreases in 𝜏. Note that 𝜏 < 𝜆 is equivalent to 𝜒 > 1.
With 𝜒 > 1, the elasticity of consumption of Type H is greater than unity or elastic,
and that of Type S is less than unity or inelastic. With 𝜏 = 0, 𝜒 = 1 + 𝜑 > 1. When𝜏 = 𝜆, or 𝜑 = 0, then 𝜒 = 1 or 𝑐𝑡 = 𝑐𝐻𝑡 = 𝑐𝑆𝑡 = 𝑦𝑡.

Since Campbell and Mankiw (1991, 1990, 1989) consider the case in which Type H
consumes a constant fraction of aggregate income, this case is called the CM case.
When 𝜆𝜒 < 1, Type S consumption is procyclical with respect to 𝑦𝑡. The condition
for 𝜆𝜒 > 1 is 𝜑 < (1 − 𝜆)/(𝜆 − 𝜏). With a sufficiently large 𝜑, the consumption of
Type S may be countercyclical (𝜆𝜒 < 1) with respect to 𝑦𝑡.

Then, the logarithmic hours worked for each type is𝑛𝐻𝑡 = (1 + (1 − 𝜒)𝛾/𝜑)𝑦𝑡,𝑛𝑆𝑡 = (1 − 𝜆(1 − 𝜒)1 − 𝜆 𝛾𝜑) 𝑦𝑡. (4)

*5 The Taylor rule of a standard NK model is𝐼𝑁𝑇𝑡 = exp(−𝑚𝑡)𝛽 𝐼𝑁𝐹𝐿𝜙𝑝𝑡 𝑌 𝜙𝑦𝑡 , 𝜙𝑝 > 1.
The main results remain robust even after applying this rule. See Online Appendix for further
details.
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When 𝜒 > 1, Type H’s hours worked are inelastic, and those of Type S are elastic.
When 𝜆 = 0 (RANK), 𝜏 = 𝜆 (CM), or 𝛾 = 0 (GHH), then 𝑛𝑡 = 𝑛𝐻𝑡 = 𝑛𝑆𝑡 = 𝑦𝑡.

Then, the economic intuition is as follows. Let us examine the RANK model, in which a
single agent works and receives all the profits. As aggregate income increases, demand
also increases (owing to sticky prices), leading to an expansion in labor demand and
an increase in real wages, which, in turn, decreases profits because wages represent
marginal costs. As the same agent experiences both gains in labor income and losses
in capital income, the income distribution between the two remains neutral.

The TANK model breaks this neutrality by introducing a general equilibrium feedback
loop, wherein Type H’s actions influence Type S’s income through an income effect.
First, I consider the case with no redistribution (𝜏 = 0). If demand increases for
any reason, causing the real wage to rise (by moving along an upward-sloping labor
supply curve, where 𝜑 > 1), Type H’s income increases. Their demand also increases
proportionally because they do not experience the negative income effect of declining
profit. The result is an additional boost to aggregate demand, causing labor demand to
shift even further, increasing wages, and so on. Ultimately, equilibrium is reached when
Type S, whose income decreases as profits decline, responds optimally by increasing
the hours worked to generate the additional demand needed to compensate for the
income loss.

This mechanism is dampened when redistribution is introduced with 𝜏 > 0. Type H
consumers begin internalizing some of the negative income effect of declining profits
through the transfer and, consequently, do not increase their demand as much. The
case with 𝜒 = 1 ⇔ 𝜏 = 𝜆 (CM) is achieved when profits are uniformly distributed,
resulting in the income effect’s disappearance. By contrast, when Type H receives an
unequal share of the profits (𝜏 > 𝜆), the opposite occurs.

The inequality measure is defined as the logarithmic consumption ratio of type S to
type H: 𝑔𝑎𝑝𝑡 ∶= 𝑐𝑆𝑡 − 𝑐𝐻𝑡 = 1 − 𝜒1 − 𝜆𝑦𝑡. (5)

When 𝜒 > 1, the inequality measure is countercyclical. As the income of S fluctuates
more than proportionally with the total income, inequality decreases during economic
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expansions and increases during economic recessions. Likewise, when 𝜒 < 1, the
inequality measure is procyclical. A more aggressive redistribution policy (𝜏>𝜆)
reverses the inequality gap.

3 Main Results
In this section, I present the main results and examine the impacts of heterogeneity
and complementarity on the NK-IS curve, the NK consumption function, and the
objective function of the optimal policy.

3.1 New Keynesian IS Curve

I now derive the three-equation NK model: IS curve, Phillips curve, and monetary
policy (MP) equation. I first investigate the properties of the IS curve, and then discuss
monetary multipliers in both the IS-MP analysis and the aggregate demand–aggregate
supply (AD-AS) analysis cases.

Using 𝜅(𝑐𝑆𝑡 − 𝑛𝑆𝑡 ) = 𝜅𝜑 + 𝛾𝜑 𝜆(1 − 𝜒)1 − 𝜆 𝑦𝑡= 𝜉𝜑 + 1𝜑 𝜆(1 − 𝜒)1 − 𝜆 𝑦𝑡,
I obtain the marginal utility of type S (𝑚𝑢𝑆𝑡 ) as follows:𝑚𝑢𝑆𝑡 = − (𝛾𝑐𝑆𝑡 + 𝜅(𝑐𝑆𝑡 − 𝑛𝑆𝑡 ))= − (𝛾 + 𝜆(1 − 𝜒)1 − 𝜆 {𝛾 + 𝜉(𝜑 + 1)𝜑 }) 𝑦𝑡. (6)

With 𝜒 > 1, the consumption of Type S is inelastic and that of hours worked is elastic(𝑐𝑆𝑡 < 𝑛𝑆𝑡 ). Thus, marginal utility increases with the degree of complementarity
between consumption and hours worked. When 𝜆 = 0 (RANK) or 𝜒 = 1 (CM),𝑚𝑢𝑆𝑡 = −𝛾𝑦𝑡, indicating that marginal utility is independent of complementarity.
With 𝜉 = 0 (CRRA-TANK), 𝑚𝑢𝑆𝑡 = −𝛾1 − 𝜆𝜒1 − 𝜆 𝑦𝑡,
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which is the case in Bilbiie’s studies (2020b, 2008).

With 𝛾 = 0 (GHH-TANK),𝑚𝑢𝑆𝑡 = −𝜉𝜑 + 1𝜑 𝜆(1 − 𝜒)1 − 𝜆 𝑦𝑡.
Interestingly, unlike the GHH-RANK (𝛾 = 𝜆 = 0), marginal utility depends on output.

Substituting (6) in the following Euler equation:𝑚𝑢𝑆𝑡 − 𝔼𝑡 [𝑚𝑢𝑆𝑡+1] = 𝑖𝑛𝑡𝑡 − 𝔼𝑡𝑖𝑛𝑓𝑙𝑡+1,
I obtain the NK-IS curve,𝑦𝑡 = 𝔼𝑡 [𝑦𝑡+1] − 𝑖𝑛𝑡𝑡 − 𝔼𝑡𝑖𝑛𝑓𝑙𝑡+1�̃� (7)

where �̃� = 𝛾 + 𝜆(1 − 𝜒)1 − 𝜆 {𝛾 + 𝜉(𝜑 + 1)𝜑 } . (8)

The inverse of �̃� is called the GE-EIS. Following Bilbiie (2020a), the GE-EIS is
distinguished from the EIS by considering the general equilibrium effects. The EIS is
the percentage change in consumption growth that can be attributed to a percentage
change in the marginal rate of intertemporal substitution.*6 In other words, the EIS
is 𝜕(𝑐𝑡+1 − 𝑐𝑡)/𝜕(𝑚𝑢𝑡 − 𝑚𝑢𝑡+1) = 1/(𝛾 + 𝜅). In equilibrium, consumption is the
output and the marginal rate of intertemporal substitution is the real interest rate𝐼𝑁𝑇𝑡/𝔼𝑡𝐼𝑁𝐹𝐿𝑡+1. Therefore, the GE-EIS is 𝑑(𝔼𝑡𝑦𝑡+1 − 𝑦𝑡)/𝑑𝑟𝑡 = 1/�̃�. In the
RANK model, the EIS and GE-EIS have the same value 1/𝛾.

Assume �̃� > 0, 𝜒 > 1, and 𝜅 > 0. Then, (2) and (8) indicate �̃� < 𝛾 or 1/�̃� > 1/𝛾.
Because �̃� in (8) decreases with 𝜉 and 𝜆, the GE-EIS increases with the degree of
complementarity 𝜉 and ratio of hand-to-mouth households 𝜆.

*6 The marginal rate of intertemporal substitution is𝑀𝑅𝐼𝑆𝑡+1 = 𝑈𝐶(𝐶𝑡, 𝑁𝑡)/{𝛽𝑈𝐶(𝐶𝑡+1, 𝑁𝑡+1)},
and the EIS is 𝜕 ln(𝐶𝑡+1/𝐶𝑡)/𝜕 ln 𝑀𝑅𝐼𝑆𝑡+1. As discussed later, the inverse of 𝑀𝑅𝐼𝑆 is called
the stochastic discount factor.
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Let us consider the conditions for a positive GE-EIS. Equation (8) can be expressed
as follows: �̃� = 𝛾1 − 𝜆𝜒1 − 𝜆 + 𝜉𝜆(1 − 𝜒)1 − 𝜆 (𝜑 + 1)𝜑 .
Therefore, the necessary and sufficient condition for �̃� > 0 is𝜆𝜒 < 1 & 𝛾 > 𝜉𝜆(𝜒 − 1)1 − 𝜆𝜒 𝜑 + 1𝜑
or 𝜆𝜒 > 1 & 𝛾 < 𝜉𝜆(𝜒 − 1)1 − 𝜆𝜒 𝜑 + 1𝜑 .
The latter case is pathological and is ignored in this study. The first case indicates that
a sufficiently large 𝛾 is required with 𝜆𝜒 < 1 and 𝜒 > 1. In the case of the separable
TANK (𝜉 = 0), only 𝜆𝜒 < 1 is required for a positive GE-EIS, but 𝜒 > 1 is also
required for the GE-EIS to increase with 𝜆, as discussed in Bilbiie (2008). However, in
the case of the GHH-TANK (𝛾 = 0) with 𝜒 < 1, the GE-EIS is positive and decreases
with 𝜆.

Remember that 𝜒 > 1 ⇔ 𝜆 > 𝜏 and 𝜆𝜒 < 1 ⇔ 𝜑 < (1 − 𝜆)/(𝜆 − 𝜏). The above
discussion can be summarized as follows:

Proposition 1: Assume 𝜉 ≥ 0, 𝜆 > 𝜏, 𝜑 < (1 − 𝜆)/(𝜆 − 𝜏), and𝛾 > 𝜉(𝜑 + 1)(𝜆 − 𝜏)1 − 𝜆 − 𝜑(𝜆 − 𝜏).
Then, inequality is countercyclical (𝜒 > 1), the consumption of type S house-
holds is procyclical (𝜆𝜒 < 1), and the GE-EIS (1/�̃�) is positive and greater than1/𝛾. A higher degree of complementarity and a higher ratio of hand-to-mouth
households generate a higher GE-EIS.

For example, when 𝜏 = 0, 𝜑 = 1, 𝜆 = 1/4, and 0 ≤ 𝜉 < 𝛾, the assumption in the
proposition above is established.

As Bilbiie (2020a) suggests, complementarity has no impact on the GS-EIS in a RANK
economy. By contrast, complementarity, as well as the hand-to-mouth consumer
portion, has a crucial effect even with a TANK economy. The countercyclical inequality
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and procyclical consumption of Type S both increase the degree of the GE-EIS. I intuit
this finding as follows: I begin with a RANK model with separable utility (𝜆 = 𝜅 = 0).
In this case, the EIS is equivalent to the inverse of the income effect on labor supply 𝛾.
When 𝛾 is lower, a change in the marginal rate of the intertemporal substitution (or
interest rate) precipitates a greater change in consumption today, relative to tomorrow.
A smaller income effect implies that equilibrium income must increase by a relatively
larger amount in order to achieve the same shift in the constant consumption labor
supply. Therefore, with separable preferences, the intertemporal substitution and
income/wealth effect on labor supply are linked in a one-to-one manner.

In the case of a TANK model (𝜆 > 0), because Type H consumers do not have access
to the bond market, the GE-EIS is determined by Type S’s consumption and labor.
As previously indicated, with countercyclical inequality (𝜒 > 1), Type H consumption
is elastic vis-a-vis aggregate demand, whereas consumption in Type S is inelastic.
The more limited the percentage of consumers accessible, the greater the impact on
aggregate demand for changes in the interest rate.

With 𝜅 ≠ 0, the income effect 𝛾 includes an additional factor beyond the consumption
curvature that arises from complementarity. When 𝑛𝑡 = 𝑐𝑡, complementarity does not
impact the GE-EIS. However, if 𝑛𝑡 ≠ 𝑐𝑡, complementarity must compensate for this
imbalance and prompt the necessary variation in working hours to achieve the con-
sumption variation demanded by the intertemporal substitution. With countercyclical
inequality (𝜒 > 1), Type S consumption is inelastic and labor is elastic, 𝑛𝑡 > 𝑐𝑡,
implying that complementarity enhances the GE-EIS.

The three-equation TANK model with non-separable utility comprises (7),𝑖𝑛𝑓𝑙𝑡 = 𝜓(𝛾 + 𝜑)𝜂 𝑦𝑡, (9)

and 𝑖𝑛𝑡𝑡 = 𝜙 ⋅ 𝔼𝑡𝑖𝑛𝑓𝑙𝑡+1 − 𝑚𝑡. (10)

The equation (9) is called the simplified Philips curve or aggregate supply (AS) curve,
and the last one (10) is the Monetary Policy (MP) curve. Using these equations, I
briefly explore monetary multipliers within two analytical frameworks: the IS-MP
model and the AD-AS approach.
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First, we conduct an IS-MP analysis. With 𝐸𝑡𝑦𝑡+1 = 𝜌𝑦𝑡 (0 < 𝜌 < 1) and a fixed
price (𝑖𝑛𝑓𝑙𝑡 = 0), the MP curve is 𝑟𝑡 = 𝑖𝑛𝑡𝑡 = −𝑚𝑡.

Thus, the multiplier effect under fixed prices is as follows:Ω ∶= 𝑑𝑦𝑡𝑑𝑚𝑡 ∣𝑖𝑛𝑓𝑙𝑡=0 = 𝑑𝑦𝑡𝑑(−𝑟𝑡) = 1̃𝛾 11 − 𝜌 .
With 𝜆 = 0 (RANK), I obtain Ω = 1/{𝛾(1 − 𝜌)}, which implies that complementarity
does not matter; otherwise, with the countercyclical inequality measure (𝜒 > 1), the
larger the ratio of Type H consumers (𝜆) and the degree of complementarity (𝜉), the
larger the multiplier effect Ω.

Substituting (9) into (7) yields the following aggregate demand (AD) curve:𝑦𝑡 = 𝔼𝑡 [𝑦𝑡+1] − (𝜙 − 1)𝔼𝑡𝑖𝑛𝑓𝑙𝑡+1 − 𝑚𝑡�̃�= {1 − (𝜙 − 1)(𝜓/𝜂) (𝛾 + 𝜑)�̃� } 𝔼𝑡 [𝑦𝑡+1] + 1̃𝛾𝑚𝑡.
When 𝜙 > 1 and the GE-EIS (1/�̃�) is positive, the coefficient of 𝔼𝑡 [𝑦𝑡+1] is less than
1, and the equilibrium is deterministic.

Then, I conduct an AD-AS analysis with 𝐸𝑡𝑖𝑛𝑓𝑙𝑡+1 = 𝜌 ⋅ 𝑖𝑛𝑓𝑙𝑡 and 𝐸𝑡𝑦𝑡+1 = 𝜌𝑦𝑡.
With 𝜙 > 1, the multiplier effect under price rigidity is as follows:𝑑𝑦𝑡𝑑𝑚𝑡 = 1Ω−1 + 𝜌(𝜙 − 1)(𝜓/𝜂) (𝛾 + 𝜑) < Ω.
This effect is smaller than that of Ω. The degree of complementarity (𝜉 or 𝜅) has no
impact other than Ω. In particular, the multiplier with flexible prices (𝜓 → ∞) is 0,
or monetary policy does not affect output.

3.2 New Keynesian Cross

I follow Bilbiie (2020a) to derive an NK consumption function that considers comple-
mentarity and, as a result, measures the MPC.

In this framework, the multiplier under a fixed price is the total effect of monetary
policy on consumption Ω = 𝑑𝑐𝑡/𝑑(−𝑟𝑡). The effect Ω can be decomposed into two
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effects. The direct effect is the partial derivative 𝜕𝑐𝑡/𝜕(−𝑟𝑡). The indirect effect is
the derivative along the path where 𝑐𝑡 = 𝑦𝑡; however, the interest rate is fixed. That
is, 𝑑𝑐𝑡𝑑(−𝑟𝑡) = 𝜕𝑐𝑡𝜕(−𝑟𝑡) + 𝜕𝑐𝑡𝜕𝑦𝑡 𝑑𝑦𝑡𝑑(−𝑟𝑡)= 𝜕𝑐𝑡𝜕(−𝑟𝑡) + 𝜕𝑐𝑡𝜕𝑦𝑡 𝑑𝑐𝑡𝑑(−𝑟𝑡).
Denoting Ω𝐷 = 𝜕𝑐𝑡/𝜕(−𝑟𝑡), Ω𝐼 = Ω − Ω𝐷, and 𝜔 = 𝜕𝑐𝑡/𝜕𝑦𝑡, I obtain:Ω = Ω𝐷/(1 − 𝜔)𝜔 = Ω𝐼/Ω,
where the relative share of the indirect effect 𝜔 is the MPC. To calculate the MPC,
Bilbiie (2020a) proposes the NK cross, where the consumption function is expressed
as a function of the current income for a given real interest rate:𝑐𝑡 = 𝜔𝑦𝑡 − Ω𝐷𝑟𝑡,
where the slope 𝜔 is the MPC and the shift in Ω𝐷 reflects changes in autonomous
expenditure when policy changes occur. In models without capital and inventories,Ω𝐷 is the same as the intertemporal substitution. Households tend to increase their
consumption in the present when the interest rate decreases at a given income level.
Income adjustments are necessary to achieve equilibrium because there are no assets
to liquidate or “disinvest.” This mechanism is nearly the same as that of the old
Keynesian cross, in which the “ad-hoc” consumption function is a function of only
the current income, and the investment function is included. Bilbiie (2020a) utilizes
the intertemporal budget constraint to derive a consumption function with a micro-
foundation. However, he considers the CRRA utility function, which is separable
between consumption and hours worked.

As detailed in Online Appendix, the intertemporal budget constraint for agent 𝑗 is∞∑𝑖=0 𝑄𝑗𝑡,𝑡+𝑖𝐶𝑗𝑡+𝑖 = ∞∑𝑖=0 𝑄𝑗𝑡,𝑡+𝑖𝑌 𝐷,𝑗𝑡+𝑖 , (11)

where 𝑌 𝐷,𝑗𝑡 is the disposable income (the sum of labor and asset income) and 𝑄𝑗𝑡,𝑡+𝑖
is a stochastic discount factor.
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The first-order conditions at each date and state are𝑄𝑗𝑡,𝑡+𝑖 = 𝛽𝑖 𝑈𝐶(𝐶𝑗𝑡+𝑖)𝑈𝐶(𝐶𝑗𝑡 ) , (12)

where 0 < 𝛽 < 1. By log-linearizing the intertemporal budget constraint (11) and
using the Euler equation and definition of stochastic discount factors (12), I obtain
the consumption function in recursive form:𝑐𝑗𝑡 = (1 − 𝛽)𝑦𝐷,𝑗𝑡 + 𝛽 (𝔼𝑡𝑐𝑗𝑡+1 − 1𝛾 + 𝜅 (𝑟𝑡 + 𝜅 (𝔼𝑡𝑛𝑗𝑡+1 − 𝑛𝑗𝑡))) . (13)

Note that agent 𝑗 takes as given 𝑟𝑡, 𝑛𝑡, and 𝑦𝐷,𝑗𝑡 .

First, I consider a non-separable RANK case. The consumption function for future
consumption and current disposable income can be expressed in several ways. Bilbiie
(2020a) assumes that 𝔼𝑡𝑐𝑆𝑡+1 = 1 − 𝜆𝜒1 − 𝜆 𝔼𝑡𝑐𝑡+1𝑦𝐷,𝑆𝑡 = 1 − 𝜆𝜒1 − 𝜆 𝑦𝑡
in the separable TANK case. That is, the expected variable value is attributed to
future consumption, whereas the current variable is attributed to income. Following
this rule, I assume 𝔼𝑡𝑛𝑡+1 = 𝔼𝑡𝑐𝑡+1, and 𝑛𝑡 = 𝑦𝑡.

Then, I obtain 𝑐𝑡 = 𝛽𝛾𝛾 + 𝜅𝔼𝑡𝑐𝑡+1 + {1 − 𝛽𝛾𝛾 + 𝜅} 𝑦𝑡 − 𝛽𝑟𝑡𝛾 + 𝜅= ̃𝛽𝔼𝑡𝑐𝑡+1 + (1 − ̃𝛽)𝑦𝑡 − ̃𝛽𝑟𝑡𝛾
where ̃𝛽 = 𝛽𝛾/(𝛾 + 𝜅). If ̃𝛽 is replaced with 𝛽, the non-separable RANK is the
same as the separable RANK, which involves an identification problem. Notably, by
imposing a good market clearing 𝑐𝑡 = 𝑦𝑡, I obtain the familiar RANK-IS curve:𝑦𝑡 = 𝐸𝑡𝑦𝑡+1 − 𝑟𝑡/𝛾.
With 𝔼𝑡𝑐𝑡+1 = 𝜌𝑐𝑡, I obtain the consumption function:𝑐𝑡 = 1 − ̃𝛽1 − ̃𝛽𝜌𝑦𝑡 + 1𝛾 ̃𝛽1 − ̃𝛽𝜌𝑟𝑡.
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The coefficient of the first term on the right-hand side is the MPC with non-separable
(𝜔). For GHH (𝛾 = 0), the consumption function reduces to 𝑐𝑡 = 𝑦𝑡 + 𝑟𝑡, and the
MPC is unity.

Assume that the degree of complementarity is positive or 𝜅 > 0. Then,𝜔 = 1 − ̃𝛽1 − ̃𝛽𝜌 = 1 − (1 − 𝜌)𝛽𝜅/𝛾 + 1 − 𝛽𝜌 > 1 − 𝛽1 − 𝛽𝜌,
implying that the MPC increases as the degree of complementarity increases. The
necessary and sufficient condition for 0 < 𝜔 < 1 is0 < ̃𝛽 < 1 ⇔ 0 < 𝛽 < 1 & 𝜅 > 𝛽 − 1,
implying that a positive complementarity ensures 0 < 𝜔 < 1.

Next, I consider a non-separable TANK case. Assuming𝔼𝑡𝑐𝑆𝑡+1 = 1 − 𝜆𝜒1 − 𝜆 𝔼𝑡𝑐𝑡+1, 𝔼𝑡𝑛𝑆𝑡+1 = (1 − 𝜆(1 − 𝜒)1 − 𝜆 𝛾𝜑) 𝔼𝑡𝑐𝑡+1,𝑦𝐷,𝑆𝑡 = 1 − 𝜆𝜒1 − 𝜆 𝑦𝑡, 𝑛𝑆𝑡 = (1 − 𝜆(1 − 𝜒)1 − 𝜆 𝛾𝜑) 𝑦𝑡,
equation (13) for Type S is𝑐𝑆𝑡 = ̃𝛽1 − 𝜆 {1 − 𝜆𝜒 + 𝜅𝜆(1 − 𝜒) ( 1𝜑 + 1𝛾)} 𝔼𝑡𝑐𝑡+1+ 11 − 𝜆 {(1 − ̃𝛽)(1 − 𝜆𝜒) − ̃𝛽𝜅𝜆(1 − 𝜒) ( 1𝜑 + 1𝛾)} 𝑦𝑡 − ̃𝛽𝑟𝑡𝛾 .
See Online Appendix for a detailed derivation. Therefore, using 𝑐𝐻𝑡 = 𝜒𝑦𝑡, I obtain
the aggregate dynamic consumption function as𝑐𝑡 = (1 − 𝜆)𝑐𝑆𝑡 + 𝜆𝑐𝐻𝑡= (1 − 𝜆) ̃𝛽�̃�𝛾 𝐸𝑡𝑐𝑡+1 + {1 − (1 − 𝜆) ̃𝛽�̃�𝛾 } 𝑦𝑡 − (1 − 𝜆) ̃𝛽𝑟𝑡𝛾 ,
where �̃� is defined in Equation (8). See Online Appendix. By imposing good market
clearing 𝑐𝑡 = 𝑦𝑡, I obtain the separable TANK-IS curve (7).

With 𝔼𝑡𝑐𝑡+1 = 𝜌𝑐𝑡, I obtain the following proposition:
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Proposition 2: In a non-separable TANK model, aggregate MPC 𝜔 is

𝜔 = 1 − (1 − 𝜆) ̃𝛽�̃�/𝛾1 − (1 − 𝜆) ̃𝛽𝜌�̃�/𝛾= 1 − ̃𝛽 {1 − 𝜆𝜒 − 𝜉𝜆(𝜒 − 1)𝜑+1𝛾𝜑 }1 − ̃𝛽𝜌 {1 − 𝜆𝜒 − 𝜉𝜆(𝜒 − 1)𝜑+1𝛾𝜑 }.
Assume that the conditions in Proposition 1 are satisfied. Then, 0 < 𝜔 < 1,
and 𝜔 increases with the degree of complementarity and ratio of hand-to-mouth
households.

See Online Appendix for proof.

I now provide some comments on this proposition. When 𝜆 = 0, 𝜔 is reduced to the
MPC of the non-separable RANK model: (1 − ̃𝛽)/(1 − ̃𝛽𝜌), with ̃𝛽 = 𝛽𝛾/(𝛾 + 𝜅).
When 𝜉 = 0 (CRRA-TANK), it reduces to𝜔 = 1 − 𝛽(1 − 𝜆𝜒)1 − 𝛽(1 − 𝜆𝜒)𝜌.
When Type S consumption is procyclical (𝜆𝜒 < 1), 0 < 𝜔 < 1, as discussed in Bilbiie
(2020b). Interestingly, 𝜔 is independent of 𝛾. When 𝛾 = 0 (GHH-TANK), the MPC
reduces to 𝜔 = 1 − 𝛽𝜆(1 − 𝜒)1 − 𝛽𝜆(1 − 𝜒)𝜌.
Then, the condition for 0 < 𝜔 < 1 is 𝜒 < 1 or the inequality measure is procyclical.

In conjunction with the discussion in the previous subsection, this proposition suggests
that when consumption and hours worked are complementary (𝜉 > 0), inequality
is countercyclical (𝜒 > 1) with aggregate demand 𝑦𝑡, the consumption of Type S
households is procyclical (𝜆𝜒 < 1) with 𝑦𝑡, and the income effect 𝛾 is sufficiently
large. Then, the MPC 𝜔 is greater than 0 and less than unity, and the GE-EIS is
positive. Furthermore, the degree of complementarity 𝜉 and the ratio of hand-to-mouth
households 𝜆 increase both values and multiplier Ω, amplifying the effect of monetary
policy.
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3.3 Optimal Monetary Policy

In this subsection, I explore the optimal monetary policy in the case of a non-
separable TANK model. First, we derive the objective function using a second-order
log approximation, demonstrating that the objective function of the TANK model
differs from that of the RANK model only in terms of weights. Next, I briefly discuss
an optimal policy.

The second-order log approximation of the objective function of Type 𝑗 is derived as
follows: 𝑈𝑗𝑡 − 𝑈𝑗𝑈𝑗𝐶𝐶𝑗 =𝑐𝑗𝑡 + 1 − 𝛾2 (𝑐𝑗𝑡)2 + 𝑁𝑗𝐶𝑗 𝑈𝑗𝑁𝑈𝑗𝐶 (𝑛𝑗𝑡 + 1 + 𝜑2 𝑛2𝑡 )

− 12𝜅𝑗 (𝑐𝑗𝑡 + 𝑁𝑗𝐶𝑗 𝑈𝑗𝑁𝑈𝑗𝐶 𝑛𝑗𝑡)2 ,𝜅𝑗 = − 𝑈𝑗𝐶𝑁𝐶𝑗/𝑈𝑗𝑁
Consider the case of the RANK model with no distorted economy. The above is𝑈𝑡 − 𝑈𝑈𝐶𝐶 = 𝑐𝑡 + 1 − 𝛾2 𝑐2𝑡 − (𝑛𝑡 + 1 + 𝜑2 (𝑛𝑡)2) − 12𝜅 (𝑐𝑡 − 𝑛𝑡)2 .
Whether or not 𝜅 = 0, the objective function remains unchanged because the last
term vanishes at equilibrium (𝑐𝑡 = 𝑛𝑡).

Next, consider the case of the TANK model in which 𝐶 = 𝐶𝑗, 𝑁 = 𝑁𝑗, 𝑈 =𝑈𝑗, 𝑈𝐶 = 𝑈𝑗𝐶, and 𝜅𝑗 = 𝜅. Then, the total objective function is

𝜆𝑈𝐻𝑡 − 𝑈𝑈𝐶𝐶 + (1 − 𝜆)𝑈𝑆𝑡 − 𝑈𝑈𝐶𝐶= −𝜂𝑖𝑛𝑓𝑙2𝑡2 − 𝛾2{𝜆(𝑐𝐻)2 + (1 − 𝜆)(𝑐𝑆)2}− 𝜑2 {𝜆(𝑛𝐻𝑡 )2 + (1 − 𝜆)(𝑛𝑆𝑡 )2}− 𝜅2 {𝜆(𝑐𝐻 − 𝑛𝐻𝑡 )2 + (1 − 𝜆) (𝑐𝑆𝑡 − 𝑛𝑆𝑡 )2}.
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See Online Appendix for a detailed derivation. Remember that (3) and (4). The first
and second terms are expressed as follows:−𝜂2𝑖𝑛𝑓𝑙2𝑡 − 𝛾 + 𝜑2 (1 + 𝛾𝜑 𝜆(𝜒 − 1)21 − 𝜆 ) 𝑦2𝑡 ,
The above is the same as the welfare function in Bilbiie (2024).

The final term is as follows:−𝜅2 𝜎 + 𝜑𝜑 𝜆(𝜒 − 1)21 − 𝜆 𝑦2𝑡 = −12𝜉𝜑 + 1𝜑 𝛾 + 𝜑𝜑 𝜆(1 − 𝜆)𝑔𝑎𝑝2𝑡 ,
where 𝑔𝑎𝑝𝑡 is defined in (5). Complementarity and the size of gap cause the output to
be heavily weighted. Whether the inequality measure is procyclical or countercyclical
does not matter here.

In summary, I obtain the following proposition:

Proposition 3: Solving the welfare maximization problem is equivalent to
minimizing the following objective function:

min 12𝐸0 ∞∑𝑡=0 {𝑖𝑛𝑓𝑙2𝑡 + 𝛼𝑦2𝑡 } (14)

where 𝛼 ∶= 𝛼𝑦�̃�, 𝛼𝑦 ∶= (𝛾 + 𝜑)/𝜂, and�̃� ∶= (1 + {𝛾 + 𝜉𝜑 + 1𝜑 } 𝜆(𝜒 − 1)2𝜑(1 − 𝜆) )= (1 + {𝛾 + 𝜉𝜑 + 1𝜑 } 𝜆(1 − 𝜆)𝜑 𝑔𝑎𝑝2𝑡𝑦2𝑡 ) .
When 𝜆 = 0 (RANK) or 𝜒 = 1 (CM-TANK), 𝛼 = 𝛼𝑦. When 𝜉 = 0 (Separable
TANK), 𝛼𝑦2𝑡 = 𝛼𝑦𝑦2𝑡 + 𝜆(1 − 𝜆)(𝛾/𝜑)𝑔𝑎𝑝2𝑡 .

Recall that (2) is the necessary and sufficient condition for a concave utility function.
As long as 𝜉 ≥ 0, the objective function in the non-separable TANK model (14) is
weighted more toward output than toward inflation compared with the RANK model
(𝛼 > 𝛼𝑦). The fewer people involved in the bond market, the smaller the weight of
inflation.

20



Now, I examine the optimal policies under “discretion” and “commitment.” To
implement the discretion policy, equation (14) is solved under the assumption that
the central bank lacks commitment and treats expectations as fixed parameters rather
than accounting for the impact of its actions on them. As a result, the central bank
re-optimizes each period, subject to (9), with expectations fixed at the decision time.
Because this problem is mathematically equivalent to that in the RANK economy, I
obtain the following solution:𝑦𝑡 = −(𝜓/𝜂)(𝛾 + 𝜑)𝛼 𝑖𝑛𝑓𝑙𝑡 = −�̃�𝛼𝑖𝑛𝑓𝑙𝑡.
To achieve the optimal (timeless) commitment policy, one must adopt a different
targeting rule, such as the approach in the RANK economy discussed in Woodford
(2003), on the time-inconsistent Ramsey equilibrium. Normalizing the initial (log-
linearized) price level to 0, I obtain the following solution:𝑦𝑡 = −�̃�𝛼 𝑡∑𝑗=0 𝑖𝑛𝑓𝑙𝑡−𝑗 = −�̃�𝛼𝑝𝑡
The optimal commitment policy requires targeting the price level.

4 Conclusion
This study uses a TANK model with non-separable preferences to analyze how monetary
policy affects the economy. The complementarity between consumption and hours
worked significantly contributes in the GE-EIS, MPC, and objective function for
optimal monetary policy. When inequality is countercyclical with aggregate demand,
both the GE-EIS and MPC increase in the degree of complementarity and ratio
of hand-to-mouth households. Irrespective of whether inequality is procyclical or
countercyclical, a higher degree, a higher ratio, and a larger size of inequality gap
cause the weight of output in the objective function to be larger than that of inflation.

This study’s findings highlight the importance of incorporating complementarity into
the building models. Most dynamic stochastic general equilibrium models assume
separable preferences; however, accounting for complementarity can enhance the
accuracy of policy effect predictions. The next step is to conduct a Bayesian estimation
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for medium-scale dynamic stochastic general equilibrium models that incorporate
separable preferences and capital stocks.

Concerning theoretical development, Bilbiie (2008) conducted a theoretical study on
the possibility of an inverted IS curve, while I assume the elasticity of intertemporal
substitution to be positive for valid marginal propensity to consume. Further ex-
ploration of this inversion will yield meaningful insights. We may also incorporate
complementarity into various economic models and analyze them analytically. As
such, the THANK model (Bilbiie, 2024) is a priority, and it incorporates idiosyncratic
shocks and provides a clearer economic intuition than the TANK model.

Finally, I would like to further clarify the relationship of the findings herein with the
study by Auclert et al. (2023) (see section 1). A key challenge for future research
is to examine in detail the connection between their adopted utility function and
that employed in this study. Additionally, results of the analytical research on the
correlation between price and wage rigidity—conducted by Bilbiie and Trabandt
(2025)—could serve as a foundation for further exploring the relationship with the
utility function in this study.

Appendix: Proof of Proposition 2
Let 𝑓(𝑥) = (1 − 𝑥)/(1 − 𝜌𝑥) with 0 < 𝜌 < 1. If 0 < 𝑥 < 1, then < 𝑓(𝑥) < 1.
Furthermore, 𝑓′(𝑥) = −1/(1 − 𝜌𝑥) − (1 − 𝑥)𝜌/(1 − 𝜌𝑥)2=𝜌 − 1 + 𝜌𝑥(1 − 𝜌)(1 − 𝜌𝑥)2 = (1 − 𝜌)(𝜌𝑥 − 1)(1 − 𝜌𝑥)2 .
Thus, when 0 < 𝑥 < 1, then 𝑓′(𝑥) < 0 or 𝑓(𝑥) is decreasing.

Now 𝜔 = 1 − (1 − 𝜆) ̃𝛽�̃�/𝛾1 − (1 − 𝜆)𝜌 ̃𝛽�̃�/𝛾 = 𝑓(𝑥),𝑥 = (1 − 𝜆) ̃𝛽�̃�/𝛾.
Since 0 < �̃� < 𝛾, 0 < ̃𝛽 < 𝛽 < 1, 0 ≤ 𝜆 < 1, then 0 < (1 − 𝜆) ̃𝛽�̃�/𝛾 < 1. Thus0 < 𝜔 < 1, and 𝜔 decreases with (1 − 𝜆) ̃𝛽�̃�/𝛾. Remember ̃𝛽 decreases with 𝜉, and �̃�
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decreases with 𝜆 and 𝜉. Hence 𝜔 is increasing with 𝜆 and 𝜉.
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Online Appendix for “TANK Model with Non-Separable
Preferences”

March 10, 2025

1 Concavity condition
For U to be concave, the determinant of the Hessian matrix must be non-negative:

ω2Ũ

ωC2

ω2Ũ

ω(−N)2
−
)

ω2Ũ

ωCω(−N)

[2

= UCCUNN − U2
CN ≥ 0.

Therefore both the transformed utility function and the original one have the same concavity condition.
Under the condition:

−N

C

UN

UC
=

WN

C
= 1,

then

γ = −CUCC

UC
+ κ

ϕ =
NUNN

UN
− κ.

Therefore, the concavity condition can be rewritten as follows:

UCCUNN − U2
CN ≥ 0

⇔CUCC

UC

NUNN

UN
− CNU2

CN

UCUN
≤ 0

⇔CUCC

UC

NUNN

UN
− NUN

CUC

]
−CUCN

UN

)2

= (−γ − κ)(ϕ+ κ) + κ2

= −(γ + κ)ϕ− γκ

= −γϕ− κ(ϕ+ γ) ≤ 0

⇔κ ≥ − γϕ

ϕ+ γ
.

Since κ = ξ(1 + ϕ)/(ϕ+ γ), this condition is equivalent to

ξ ≥ − ϕγ

1 + ϕ
.

.
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2 Full Model description of non-separable TANK model

2.1 Households
There are two types of households: type H (hand-to-mouse) and type S (saver) households. The total
population is normalized to be 1. The ratio of type H is λ, white that of type S is 1− λ.

Type S households
An agent S chooses consumption CS

t , bond holdings Bt, and hours worked NS
t solving standard in-

tertemporal problem

maxE0

→∑

t=0

φtU(CS
t , N

S
t )

subject to the sequence of the budget constraints:

CS
t +

Bt

1− λ
+

shareSt
1− λ

Vt + TXS
t ≤ WtN

S
t +

INTt−1

INFLt

Bt−1

1− λ
+

shareSt−1

1− λ
(Vt +Dt). (1)

where CS
t is consumption, NS

t is hours worked, Bt is bond holdings, Dt is dividends, Vt is post-dividend
stock, shareSt is a share of Vt, Wt is rate of wage, INTt−1 is rate of interest, INFLt is rate of inflation,
and TXS

t is taxation.
FOCs are given by:

MUS
t = UC

(
CS

t , N
S
t

)
(2)

MUS
t Wt = −UN

(
CS

t , N
S
t

)
(3)

1 = Et

{
φ
MUt+1

MUt

INTt

INFLt+1

}
(4)

Vt = Et

[ →∑

i=1

φiMUt+i

MUt
Dt+i

]

where MUt is marginal utility with respect to consumption.

Type H households
Type H households cannot access to the asset market and do not smooth their consumption. In each
period, all labor income is consumed; thus, the budget constraint is given by

CH
t ≤ WtN

H
t + TRH

t . (5)

where CH
t is consumption and NH

t is hours worked, and TRH
t is a lump-sum transfer. The utility

function of type H is the same as that of type S household:

maxE0

→∑

t=0

φtU(CH
t , NH

t )

Then the first-order condition is given by:

Wt = −UN (CH
t , NH

t )

UC(CH
t , NH

t )
(6)
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2.2 Firms
Final goods Firm
The final good market is perfectly competitive. The final good firm produces a final good Yt using
intermediate good Y I,j

t . The production function is given by

Yt =

]∫ 1

0
(Y I,j

t )
ψ−1
ψ dj

) ψ
ψ−1

, ψ > 1

where ψ is the elasticity of substitution among intermediate goods. Letting Pt and P I,j
t denote the prices

of final and intermediate good respectively, the profit DF
t is defined by

DF
t := PtYt −

∫ 1

0
P I,j
t Y I,j

t dj,

and the first-order condition of the profit maximization problem is

Y I,j
t = Yt

)
P I,j
t

Pt

[−ψ

. (7)

Notice that the maximized profit is DF
t = 0, and the price of final good is

Pt =

{∫ 1

0
(P I,j

t )1−ψdj

} 1
1−ψ

.

Intermediate goods Firm
The intermediate good market is monopolistically competitive. The intermediate good firm indexed by
j produces a differentiated intermediate good Y I,j

t using labor input N j
t . The production function is

given by
Y I,j
t = F (N j

t ).

Letting τS be the rate of subsidies and TXI
t the lump-sum tax, the profit Dj

t is defined by

Dj
t = (1 + τS)

P I,j
t

Pt
Y I,j
t − fP

)
P I,j
t

Pt−1

[
Yt −WtN

j
t − TXI

t

and the profit maximization problem subject to (7).
In symmetric equilibrium (Dj

t = Dt, P I,j
t = P I

t = Pt, Y I,j
t = Y I

t = Yt), FOCs are summarized as:

Wt =MCtFN (Nt)

Yt =F (Nt)

INFLtf
′
P (INFLt) =ψ

(
MCt − (1 + τS)(1− 1/ψP )

)
(8)

Dt =(1 + τS − fP (INFLt))Yt −WtNt − TXI
t (9)

where INFLt = Pt/Pt−1 is the rate of inflation.
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2.3 Government
Fiscal Policy

TXI
t = τSYt

τS =
1

ψ − 1

Substituting the above two equations into equations (8) and (9) leads to:

INFLtf
′
P (INFLt) =ψ (MCt − 1)

Dt =(1− fP (INFLt))Yt −WtNt.

The former consists of a simple endogenous redistribution scheme: taxing profits at rate τ and rebating
the proceedings lump-sum to consumer H:

λTRH
t = (1− λ)TXS

t

(1− λ)TXS
t = τDt.

Monetary Policy
Monetary polity controls nominal interest rates INTt following the rule:

INTt =
exp(−mt)

φ
EtINFLφt+1, φ > 1

mt = ρmt−1 + et, 0 < ρ < 1,

where mt is a zero-mean AR(1) monetary shock with a zero-mean iid error et

Market Clearing and Aggregate Conditions
Market clearing and aggregate conditions are as follows:

Ct = λCH
t + (1− λ)CS

t

Nt = λNH
t + (1− λ)NS

t

Bt = 0

sharet = 1

Substituting into (9) leads to:

Dt = (1− fP (INFLt))Yt −WtNt.

CS
t + TXS

t = WtN
S
t +

Dt

1− λ
.

Substituting the above into (1) leads to:

Ct = λ(WtN
H
t + TRH

t ) + (1− λ)(WtN
S
t − TXS

t ) +Dt

= WtNt +Dt = (1− fP (INFLt))Yt.

Therefore, the budget constraints is:

Yt = Ct + fP (Pt/Pt−1)Yt.
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2.4 Model Description
Functional Specifications:

U(C,N) =
1

1− ξ/(1− γ)

]
C1−γ

1− γ
− Ξ

N1+ϕ

1 + ϕ

)1−ξ/(1−γ)

F (N) = N

fP (INFLt) =
η

2
(INFLt − 1)2

Model summary (Nonlinear)
Using above functional forms, and ignoring Vt , we obtain the following (non-linear) model economy:

• Type S Household:

Wt = Ξ
(
NS

t

)ϕ (
CS

t

)γ

1 = Et

{
φ
MUS

t+1

MUS
t

INTt

INFLt+1

}

MUS
t = [CS

t ]
−γ
]
[CS

t ]
1−γ

1− γ
− Ξ

[NS
t ]

1+ϕ

1 + ϕ

)−ξ/(1−γ)

• Type H Household:

CH
t = Wt +NH

t +
τ

λ
Dt

Wt = Ξ
(
NH

t

)ϕ (
CH

t

)γ

• Firm:

Wt = MCt

η · INFLt (INFLt − 1) = ψ (MCt − 1)

Dt = (1− η

2
(INFLt − 1)2)Yt −WtNt

Yt = Nt

• Market Clearing Conditions & Monetary Policy:

Ct = λCH
t + (1− λ)CS

t

Nt = λNH
t + (1− λ)NS

t

Yt = Ct +
η

2
(INFLt − 1)2 Yt

INTt =
exp(−mt)

φ
EtINFLφt+1

mt = ρmt + et

Steadystate
With INFL = Ξ = 1, the steady state is the followings:

C = CS = CH = N = NS = NH = Y = W = 1

INT = 1/φ
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Model summary (loglinear)
We denote by small letter log deviations from steady-state, except for dividends dt := Dt/Y . Denoting
by rt := intt − Etinflt+1 and eliminating Wt, we obtain the following (log-linear) model economy:

• Type S Household:

wt = γcSt + ϕnS
t

rt = muS
t − Et

[
muS

t+1

]

muS
t = −(γ + κ)cSt + κnS

t

• Type H Household:

cHt = wt + nH
t +

τ

λ
dt

wt = γcHt + ϕnH
t

• Firm:

inflt = (ψ/η)wt

dt = −wt

• Monetary Policy:

rt = (φ− 1)Etinflt+1 −mt

mt = ρmt + emt

• Market Clearing Conditions:

yt = ct = nt

ct = λcHt + (1− λ)cSt

nt = λnH
t + (1− λ)nS

t

2.5 Log-Linear Approximation to model
• Model Specification:

F (N) = N

fP (P/Pt−1) =
η

2
(INFt − 1)2

• Steady State: D = 0, INF = 1/φ,

C = CH = CS = N = NH = NS = Y = W = INF = 1

• Log-Linear Transformation (eliminating mct)
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– Type S Household:

muS
t = −(γ + κ)cSt + κnS

t

rt = muS
t − Et

[
muS

t+1

]

wt = γcSt + ϕnS
t

– Type H Household:

cHt = wt + nH
t +

τ

λ
dt

wt = γcHt + ϕnH
t

– Firm:

inflt = (ψ/η)wt

dt = −wt

– Market Clearing Conditions & Monetary Policy:

ct = λcHt + (1− λ)cSt

nt = λnH
t + (1− λ)nS

t

yt = ct = nt

rt = (φ− 1)Etinflt+1 −mt

2.6 Analytical Solution
Substituting nH

t = (wt − γcHt )/ϕ and dt = −wt into cHt = wt + nH
t + τ

φdt leads to

cHt = wt + (wt − γcHt )/ϕ− τ

λ
wt

=
1 + ϕ(1− τ/λ)

1 + γ/ϕ

wt

ϕ
.

Substituting wt = γct + ϕnt and yt = ct = nt into the above leads to

cHt =
1 + ϕ(1− τ/λ)

1 + γ/ϕ

γct + ϕnt

ϕ

= {1 + ϕ(1− τ/λ)}yt = χyt.

Since ct = λcHt + (1− λ)cSt ,

cSt =
ct − λcHt
1− λ

=
1− λχ

1− λ
yt.

Similarly, substituting cHt = (wt − ϕnH
t )/γ and dt = −wt into nH

t = −wt + cHt − τ
φdt leads to

nH
t = wt + (wt − ϕnH

t )/γ − τ

λ
wt

=
1 + ϕ(1− τ/λ)

1 + ϕ/γ

wt

γ
.
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Substituting wt = γct + ϕnt and yt = ct = nt into the above leads to

nH
t =

1 + γ(1− τ/λ)

1 + ϕ/γ

γct + ϕnt

γ

= {1 + γ(1− τ/λ)}yt = {1 + (1− χ)γ/ϕ}yt.

Since nt = λnH
t + (1− λ)nS

t ,

nS
t =

nt − λnH
t

1− λ
=

]
1− λ(1− χ)

1− λ

γ

ϕ

)
yt.

Remains are followings:

wt = (γ + ϕ)yt

dt = −(γ + ϕ)yt

mcSt = −γcSt − κ(cSt − nS
t )

rt = muS
t − Et

[
muS

t+1

]

inflt = (ψ/η)(ϕ+ γ)yt

rt = (φ− 1)Etinflt+1 −mt

3 Another type of NK models
Consider another formulation:

yt = Et [yt+1]−
intt − Etinflt+1

γ̃
,

inflt =
ψ(γ + ϕ)

η
yt + φEtinflt+1,

intt = φp · inflt + φyyt −mt,

mt = ρmt−1 + emt ,

where

γ̃ := γ +
λ(1− χ)

1− λ

{
γ + ξ

(ϕ+ 1)

ϕ



=
1− λχ

1− λ
γ − ξ

λ(χ− 1)

1− λ

ϕ+ 1

ϕ
.

Then the stability condition is well-known, and:

φy(1− φ) + ψ(γ+ϕ)
η (φp − 1)

φγ̃
> 0.

Sufficient conditions are γ̃ > 0, φy ≥ 0, and φp > 1.
When the stability condition is satisfied, then Etinflt+1 = ρ · inflt and Etyt+1 = ρ · yt, and

yt = ρ · yt −
intt − ρ · inflt

γ̃

inflt = ψ̃yt,

intt = φp · inflt + φyyt −mt,
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where

ψ̃ :=
ψ(γ + ϕ)

η(1− φρ)
.

Therefore

yt = ρ · yt −
(φp − ρ)ψ̃yt + φyyt −mt

γ̃

=
mt

(1− ρ)γ̃ + (φp − ρ)ψ̃ + φy

=
mt

Ω−1 + (φp − ρ) ψ(γ+ϕ)η(1−βρ) + φy
< Ω

where
Ω =

1

γ̃(1− ρ)
=

1

γ + φ(1−χ)
1−φ


γ + ξ (ϕ+1)

ϕ

} 1

1− ρ
.

It is proportional to Ω, and also smaller than Ω. The parameter ξ (or κ) gives no impact on other than
Ω.

4 Recursive form
An agent j chooses consumption, asset holdings, and hours worked solving standard intertemporal prob-
lem

maxE0

→∑

t=0

φtU(Cj
t , N

j
t )

subject to the sequence of the budget constraints:

BN,j
t + sharejtV

N
t ≤ ZN,j

t + sharejt−1(V
N
t +DN

t ) +WN
t N j

t + PtTR
j
t − PtTX

j
t − PtC

j
t

Cj
t ,N

j
t are consumption and hours worked, WN

t is the nominal wage rate of period t, BN,j
t is the nominal

value at end of period t of a portfolio of all state-contingent assets held, except for shares in firms, and
XN,j

t is the nominal value at beginning of period twealth, except for shares in firms. V N
t is the nominal

market value at time t of shares, and DN
t their dividend payoff and sharejt are share holdings.

Absence of arbitrage implies that there exists a stochastic discount factor Qj
t,t+1 such that the price

at t of a portfolio with uncertain payoff at t+ 1 is as follows:

Bj
t =

BN,j
t

Pt
= EtQ

j
t,t+1

ZN,j
t+1

Pt+1
= EtQ

j
t,t+1Z

j
t+1

Vt =
V N
t

Pt
= EtQ

j
t,t+i

V N
t+1 +DN

t+1

Pt+1
= EtQ

j
t,t+i(Vt+1 +Dt+1)

= Et

T∑

i=0

Qj
t,t+1Dt+i with lim

i→→
EtQ

j
t,t+iVt+i = 0

Notice that when ZN,j
t = INTt−1B

N,j
t−1 and INFLt+1 = Pt+1/Pt, then

Bj
t = EtQ

j
t,t+1

INTtB
N,j
t

Pt+1

= EtQ
j
t,t+1

INTtPtB
j
t

Pt+1

⇔ 1 = Et
INTt

INFLt+1
Qj

t,t+1, (10)

9



which is called the Euler equation.
Let XN,j

t (Xj
t ) be the nominal (real) value at beginning of period twealth including shares:

XN,j
t = ZN,j

t + sharejt−1(V
N
t +DN

t )

Xj
t =

XN,j
t

Pt
= Zj

t + sharejt−1Et

T∑

i=0

Qj
t,t+1Dt+i.

Then
Bj

t + sharejtVt = EtQ
j
t,t+1X

j
t+1.

Therefore, the budget constraints in real term implies:

Xj
t ≥ Cj

t + TXj
t − TRj

t −WtN
j
t + EtQ

j
t,t+1X

j
t+1

≥ Cj
t + TXj

t − TRj
t −WtN

j
t + EtQ

j
t,t+1(C

j
t+1 + TXj

t+1 − TRj
t+1 −Wt+1N

j
t+1 +Qj

t+1,t+2X
j
t+2)

= Cj
t + TXj

t − TRj
t −WtN

j
t + EtQ

j
t,t+1(C

j
t+1 + TXj

t+1 − TRj
t+1 −Wt+1N

j
t+1) + EtQ

j
t,t+2X

j
t+2

≥ Et

T∑

i=0

Qj
t,t+i


Ct+i + TXj

t+i − TRj
t+i −Wt+iNt+i

}
+ EtQ

j
t,T+1X

j
T+1

≥ Et

→∑

i=0

Qj
t,t+i


Ct+i + TXj

t+i − TRj
t+i −Wt+iNt+i

}
with lim

T→→
EtQ

j
t,T+1X

j
T+1 = 0.

Thus, we obtain the intertemporal budget constraints:

Et

→∑

i=0

Qj
t,t+iCt+i ≤ Xj

t + Et

T∑

i=0

Qj
t,t+i


Wt+iNt+i + TRj

t+i − TXj
t+i

}

= Zj
t + Et

T∑

i=0

Qj
t,t+i


Wt+iNt+i + TRj

t+i − TXj
t+i + sharejt−1Dt+i

}

= Zj
t + Et

→∑

i=0

Qj
t,t+iY

D,j
t+i (11)

where Y D,j
t is the real disposable income.

The first-order conditions at each date and each state:

Qj
t,t+1 = φ

UC(C
j
t+1)

UC(C
j
t )

along with the intertemporal budget constraints (11) with equality and transversality conditions:
limi→→ EtQ

j
t,t+iZ

j
t+i = limi→→ EtQ

j
t,t+iVt+i = 0 .

In our model with equilibrium, Zj
t = (INTt−1/INFLt)B

j
t−1 = 0 and sharejt−1 = 1. Therefore,

→∑

i=0

φiUC(C
j
t+i)

UC(C
j
t )

Cj
t+i =

→∑

i=0

φiUC(C
j
t+i)

UC(C
j
t )

Y D,j
t+i .

Denote by small letter log deviations from steadystate, except for rates of return (where they denote
absolute deviations). Notice that

Qj
t,t+i = φiUC(C

j
t+i)

UC(C
j
t )

10



and in steady state: Qj
i = Qi = φi. Notice the Euler equation implies:

intt − Etinflt+1 + Etq
j
t+1 = 0.

Thus we have

qjt,t+i = ln
Qj

t,t+i

Qj
t,t

= ln
UC(C

j
t+i)

UC(C
j
t )

= −(γ + κ)(cjt+i − cjt ) + κ(nj
t+i − nj

t )

or

(γ + κ)cjt − κnj
t = (γ + κ)Etc

j
t+i − κEtn

j
t+i + Etq

j
t,t+i. (12)

Using the real interest rate
rt := intt − Etinflt+1 = −Etq

j
t,t+1,

we can rewrite the above as follows:

(γ + κ)cjt − κnj
t = (γ + κ)Etc

j
t+1 − κEtn

j
t+1 − rt.

Since

(γ + κ)Etc
j
t+1 − κEtn

j
t+1 = (γ + κ)Etc

j
t+2 − κEtn

j
t+2 − Etrt+1,

...

(γ + κ)Etc
j
t+i−1 − κEtn

j
t+i−1 = (γ + κ)Etc

j
t+i − κEtn

j
t+i − Etrt+i−1,

we obtain

(γ + κ)cjt − κnj
t = (γ + κ)Etc

j
t+i − κEtn

j
t+i − Et

i−1∑

k=0

rt+k.

Because of (12), we get

qjt,t+i = −
i−1∑

k=0

rt+k. (13)

Now loglinearize intertemporal budget constraint

Et

→∑

i=0

φi(qjt,t+i + cjt+i) = Et

→∑

i=0

φi(qjt,t+i + yD,j
t+i ).

Multiplying to each side (γ + κ), we obtain:

(γ + κ)Et

→∑

i=0

φi(qjt,t+i + cjt+i) = (γ + κ)Et

→∑

i=0

φi(qjt,t+i + yD,j
t+i ).

Then adding to each side (1− κ− γ)Et
∑→

i=0 φ
iqjt,t+i − γEt

∑→
i=0 φ

inj
t,t+i, we obtain

Et

→∑

i=0

φi((γ + κ)cjt+i − κnj
t+i + qjt,t+i) = Et

→∑

i=0

φi((γ + κ)yD,j
t+i − κnj

t+i + qjt,t+i)

By virtue of the Euler equation (12) the LHS simplifies

Et

→∑

i=0

φi((γ + κ)cjt+i − κnj
t+i + qjt,t+i) = {(γ + κ)cjt − κnj

t}
→∑

i=0

φi =
1

1− φ
{(γ + κ)cjt − κnj

t}

11



From RHS, using (13) and

→∑

i=0

φiqjt,t+i = −
→∑

i=0

φi
i−1∑

k=0

rt+k

= −φrt − φ2(rt + rt+1) + · · ·+
− φi(rt + rt+1 + · · ·+ rt+i−1) + · · ·

= −φ rt
1− φ

− φ2 rt+1

1− φ
− · · ·−−φi rt+i−1

1− φ
− · · ·

= − φ

1− φ

→∑

i=0

φirt+i,

and multiplying by 1− φ, we obtain

(γ + κ)cjt − κnj
t = −φ

→∑

i=0

φiEtrt+i + (γ + κ)(1− φ)Et

→∑

i=0

φiyD,j
t+i − κ(1− φ)Et

→∑

i=0

φinj
t+i

= −φrt + (γ + κ)(1− φ)yD,j
t − κ(1− φ)nj

t − φ
→∑

i=1

φiEtrt+i

+ (γ + κ)(1− φ)Et

→∑

i=0

φiyD,j
t+i − κ(1− φ)Et

→∑

i=1

φinj
t+i

= −φrt + (γ + κ)(1− φ)yD,j
t − κ(1− φ)nj

t − φ
→∑

i=0

φi+1Etrt+i+1

+ (γ + κ)(1− φ)Et

→∑

i=0

φi+1yD,j
t+i+1 − κ(1− φ)Et

→∑

i=1

φinj
t+i

= −φrt + (γ + κ)(1− φ)yD,j
t − κ(1− φ)nj

t + φ(γ + κ)Etc
j
t+1 − φκEtn

j
t+1

In sum,

(γ + κ)cjt = −φrt + (γ + κ)(1− φ)yD,j
t + φκnj

t + φ(γ + κ)Etc
j
t+1 − φκEtn

j
t+1

⇔ cjt = φEtc
j
t+1 + (1− φ)yD,j

t − φ

γ + κ
rt +

φκ

γ + κ
nj
t −

φκ

γ + κ
Etn

j
t+1

= (1− φ)yD,j
t + φ

]
Etc

j
t+1 −

1

γ + κ

(
rt + κ

(
Etn

j
t+1 − nj

t

)))
.

5 NK consumption function with non-separable TANK model
• TANK model:

12



cHt = χyt

cSt =
1− λχ

1− λ
yt

nH
t = (1 + (1− χ)σ/ϕ)yt

nS
t = (1− λ(1− χ)

1− λ
σ/ϕ)yt

=

]
1− λχ

1− λ
+
λ(χ− 1)

1− λ
− λ(1− χ)

1− λ

γ

ϕ

)
yt

=

]
1− λχ

1− λ
− λ(1− χ)

1− λ

γ + ϕ

ϕ

)
yt

=

]
1− λχ

1− λ
+
λ(χ− 1)

1− λ

γ + ϕ

ϕ

)
yt

• Type S consumption function:

cSt = φEtc
S
t+1 + (1− φ)ySt − φrt

γ + κ
+

φκ

γ + κ
(nS

t − Etn
S
t+1)

=
1− λχ

1− λ
{φEtct+1 + (1− φ)yt}−

φrt
γ + κ

+
φκ

γ + κ

]
1− λχ

1− λ
+
λ(χ− 1)

1− λ

γ + ϕ

ϕ

)
(yt − Etct+1)

=

{
φ
1− λχ

1− λ
− κφ

γ + κ

]
1− λχ

1− λ
+
λ(χ− 1)

1− λ

γ + ϕ

ϕ

)
Etct+1

+

{
(1− φ)

1− λχ

1− λ
+

κφ

γ + κ

]
1− λχ

1− λ
+
λ(χ− 1)

1− λ

γ + ϕ

ϕ

)
yt −

φrt
γ + κ

=

{
1− λχ

1− λ
φ̃ − κφ

γ + κ

λ(χ− 1)

1− λ

γ + ϕ

ϕ


Etct+1

+

{
1− λχ

1− λ
(1− φ̃) +

κφ

γ + κ

λ(χ− 1)

1− λ

γ + ϕ

ϕ


yt −

φ̃rt
γ

=

{
1− λχ

1− λ
φ̃ + κφ̃

λ(1− χ)

1− λ

]
1

ϕ
+

1

γ

)
Etct+1

+

{
1− λχ

1− λ
(1− φ̃)− κφ̃

λ(1− χ)

1− λ

]
1

ϕ
+

1

γ

)
yt −

φ̃rt
γ

13



• Aggregate dynamic consumption function:

ct = λcSt + (1− λ)cHt

= λχyt +

{
(1− λχ)φ̃ + κφ̃λ(1− χ)

]
1

ϕ
+

1

γ

)
Etct+1

+

{
(1− λχ)(1− φ̃)− κφ̃λ(1− χ)

]
1

ϕ
+

1

γ

)
yt −

(1− λ)φ̃rt
γ

=

{
(1− λχ)φ̃ + κφ̃λ(1− χ)

]
1

ϕ
+

1

γ

)
Etct+1

+

{
λχ+ (1− λχ)(1− φ̃)− κφ̃λ(1− χ)

]
1

ϕ
+

1

γ

)
yt −

(1− λ)φ̃rt
γ

= φ̃

{
1− λχ+ κλ(1− χ)

]
1

ϕ
+

1

γ

)
Etct+1

+

{
1− φ̃

]
1− λχ+ κλ(1− χ)

]
1

ϕ
+

1

γ

))
yt −

(1− λ)φ̃rt
γ

=
(1− λ)φ̃γ̃

γ
Etct+1 +

{
1− (1− λ)φ̃γ̃

γ

}
yt −

(1− λ)φ̃rt
γ

γ̃ =
1− λχ

1− λ
γ − ξ

λ(χ− 1)

1− λ

ϕ+ 1

ϕ

• Aggregate dynamic consumption function:

ct =
1− (1−φ)β̃γ̃

γ

1− (1−φ)β̃γ̃
γ ρ

yt −
(1−φ)β̃

γ rt

1− (1−φ)β̃γ̃
γ ρ

=
γ − (1− λ)φ̃γ̃

γ − (1− λ)φ̃γ̃ρ
yt −

(1− λ)φ̃

γ − (1− λ)φ̃γ̃ρ
rt

• MPC:

ω =
γ − (1− λ)φ̃γ̃

γ − (1− λ)φ̃γ̃ρ

=
γ − (1− λ)φ̃


1−φχ
1−φ γ − ξ φ(χ−1)

1−φ
ϕ+1
ϕ

}

γ − (1− λ)φ̃γ̃ρ


1−φχ
1−φ γ − ξ φ(χ−1)

1−φ
ϕ+1
ϕ

}

=
γ − φ̃


(1− λχ)γ − ξλ(χ− 1)ϕ+1

ϕ

}

γ − φ̃ρ

(1− λχ)γ − ξλ(χ− 1)ϕ+1

ϕ

}

=
1− φ̃


1− λχ− ξλ(χ− 1)ϕ+1

γϕ

}

1− φ̃ρ

1− λχ− ξλ(χ− 1)ϕ+1

γϕ

}

14



6 Proof of Proposition 3
• Note

Xt −X

X
≈ xt +

1

2
x2
t

]
Xt −X

X

)2

≈ x2
t

• Second-Order Approximation to Utility function:

U(Cj
t , N

j
t ) ≈ U(Cj

SS , N
j)

+ UCC
j
SS

Cj
t − Cj

Cj
+

UCC

2
(Cj)2

)
Cj

t − Cj

Cj

[2

+ UNN jN
j
t −N j

N j
+

UNN

2
(N j)2

)
N j

t −N j

N j

[2

+ UCNCjN jC
j
t − Cj

Cj

N j
t −N j

N j

+ UCC
j(cjt +

1

2
(cjt )

2) +
U j
CC

2
(Cj

SS)
2(cjt )

2

+ UNN j(nj
t +

1

2
(nj

t )
2) +

U j
NN

2
(N j)2(nj

t )
2

+ UCNCjN jcjtn
j
t

• Thus

U j
t − U j

U j
CC

j
= cjt +

1

2
(cjt )

2 +
U j
CCC

j

2U j
C

(cjt )
2

+
N j

Cj

U j
N

U j
C

)
nj
t +

1

2
(nj

t )
2 +

U j
NNN j

2U j
N

(nj
t )

2

[

+
U j
CNN j

U j
C

cjtn
j
t .

• Using

κj = −U j
CNCj/U j

N ,

γ = −U j
CCC

j

2U j
C

+
U j
CNCj

U j
N

= −U j
CCC

j

2U j
C

− κj ,

ϕ =
U j
NNN j

U j
N

− U j
CNN j

U j
C

=
U j
NNN j

U j
N

+
N j

Cj

U j
N

U j
C

κj ,
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we obtain

U j
t − U j

U j
CC

j
= cjt +

1

2
(cjt )

2 +
−γ − κj

2
(cjt )

2

+
N j

Cj

U j
N

U j
C



nj
t +

1

2
(nj

t )
2 +

ϕ− Nj

Cj

Uj
N

Uj
C

κj

2
(nj

t )
2





− N j

Cj

U j
N

U j
C

κjcjtn
j
t

= cjt +
1− γ

2
(cjt )

2 +
N j

Cj

U j
N

U j
C

]
nj
t +

1 + ϕ

2
(nj

t )
2

)

− κj

2
(cjt )

2 −
)
N j

Cj

U j
N

U j
C

[2

(nj
t )

2 − N j

Cj

U j
N

U j
C

κjcjtn
j
t

= cjt +
1− γ

2
(cjt )

2 +
N j

Cj

U j
N

U j
C

]
nj
t +

1 + ϕ

2
(nj

t )
2

)

− κj

2

)
cjt +

N j

Cj

U j
N

U j
C

nj
t

[2

.

• When Nj

Cj

Uj
N

Uj
C

= N
C

UN
UC

= 1 and κj = κ, then

U j
t − U j

U j
CC

j
=cjt +

1− γ

2
(cjt )

2 −
]
nj
t +

1 + ϕ

2
(nj

t )
2

)
− 1

2
κ
(
cjt − nj

t

)2
.

• The objective function under TANK W is as follows:

W = λ
UH
t − UH

UH
C CH

+ (1− λ)
US
t − US

US
CC

S

= λcHt + (1− λ)cSt +
1− γ

2
{λ(cH)2 + (1− λ)(cS)2}

− λnH
t + (1− λ)nS

t − 1 + ϕ

2
{λ(nH

t )2 + (1− λ)(nS
t )

2}

− κ

2
{λ(cH − nH

t )2 + (1− λ)
(
cSt − nS

t

)2}.

• When we use

ct = λcHt + (1− λ)cSt +
1

2
{λ(cH)2 + (1− λ)(cS)2},

nt = λnH
t + (1− λ)nS

t +
1

2
{λ(nH)2 + (1− λ)(nS)2},

then we obtain

W = ct − nt −
γ

2
{λ(cH)2 + (1− λ)(cS)2}

− ϕ

2
{λ(nH

t )2 + (1− λ)(nS
t )

2}

− κ

2
{λ(cH − nH

t )2 + (1− λ)
(
cSt − nS

t

)2}
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• Since

yt = ct +
η

2
infl2t ,

yt = nt,

then

W = −η
2
infl2t −

γ

2
{λ(cH)2 + (1− λ)(cS)2}

− ϕ

2
{λ(nH

t )2 + (1− λ)(nS
t )

2}

− κ

2
{λ(cH − nH

t )2 + (1− λ)
(
cSt − nS

t

)2}.

• Since

cHt = χyt,

cSt =
1− λχ

1− λ
yt,

then

λ(cH)2 + (1− λ)(cS)2 = λ (χyt)
2 + (1− λ)

]
1− λχ

1− λ
yt

)2

= λχ2y2t +
(1− λχ)2

1− λ
y2t

=

]
1 +

λ(χ− 1)2

1− λ

)
y2t .

• Since

nH
t =

]
1 +

γ

ϕ
(1− χ)

)
yt,

nS
t =

]
1 +

γ

ϕ

λ

1− λ
(χ− 1)

)
yt,

then

λ(nH
t )2 + (1− λ)(nS

t )
2

= λ

]
1 +

σ

ϕ
(1− χ)

)2

y2t + (1− λ)

]
1 +

σ

ϕ

λ

1− λ
(χ− 1)

)2

y2t

=

)
1 + λ

]
σ

ϕ

)2

(1− χ)2 +
λ2

1− λ

]
σ

ϕ

)2

(1− χ)2
[
y2t

=

)
1 +

λ

1− λ

]
σ

ϕ

)2

(1− χ)2
[
y2t .

• Since

cHt − nH
t =

]
σ

ϕ
+ 1

)
(χ− 1)yt,

cSt − nS
t =

]
1− λχ

1− λ
− 1− γ

ϕ

λ

1− λ
(χ− 1)

)
yt

=

]
−λ(χ− 1)

1− λ
− γ

ϕ

λ

1− λ
(χ− 1)

)
yt

= − λ

1− λ

]
1 +

γ

ϕ

)
(χ− 1)yt,
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then

λ(cH − nH
t )2 + (1− λ)

(
cSt − nS

t

)2

= λ

]
γ

ϕ
+ 1

)2

(χ− 1)2y2t

+
λ2

1− λ

]
γ

ϕ
+ 1

)2

(χ− 1)2y2t

=
λ

1− λ

]
γ

ϕ
+ 1

)2

(χ− 1)2y2t .

• Thus

W = −η infl
2

2
− γ

2

]
1 +

λ(χ− 1)2

1− λ

)
y2t

− ϕ

2

)
1 +

λ

1− λ

]
γ

ϕ

)2

(1− χ)2
[
y2t

− κ
λ

1− λ

]
γ

ϕ
+ 1

)2

(χ− 1)2y2t

= −η infl
2

2
− 1

2

)
γ + γ

λ(χ− 1)2

1− λ
+ ϕ+ ϕ

λ

1− λ

]
γ

ϕ

)2

(1− χ)2
[
y2t

− κ
λ

1− λ

]
γ

ϕ
+ 1

)2

(χ− 1)2y2t

= −η infl
2

2
− 1

2

]
γ + ϕ+ γ

γ + ϕ

ϕ

λ(χ− 1)2

1− λ

)
y2t

− ξ
ϕ+ 1

ϕ

γ + ϕ

ϕ
λ(1− λ)

]
χ− 1

1− λ

)2

y2t .

• When we use
gapt =

1− χ

1− λ
yt,

then we obtain:

W = −η infl
2
t

2
− γ + ϕ

2
y2t

− γ + ϕ

2

γ

ϕ
λ(χ− 1)gap2t

− γ + ϕ

2

ξ

ϕ

ϕ+ 1

ϕ
λ(1− λ)gap2t

= −η
2
infl2t −

γ + ϕ

2

]
y2t +

{
γ

ϕ
+
ξ

ϕ

ϕ+ 1

ϕ


λ(1− λ)gap2t

)
.
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