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Bivariate distribution related to directional statistics

Tomoaki Imoto
University of Shizuoka

1 Introduction

The bivariate circular distribution, called toroidal distribution, is used for analyzing the data
that is represented on a torus such as the directions of the wind at two points, and positions of
the orthologs between paired circular genomes. The examples of the toroidal distributions are
the bivariate von Mises distribution by Mardia (1975) and Johnson and Wehrly (1978), wrapped
bivariate normal distribution by Johnson and Wehrly (1978) and Baba (1981), bivariate cardioid
distribution by Wang and Shimizu (2012), bivariate wrapped Cauhcy distribution by Kato and
Jones (2015) and so on. Among these, the bivariate cardioid distribution has the property that
both marginal and conditional are univariate cardioid distributions. The same property can
be found for the bivariate wrapped Cauhcy distribution, whose marginal and conditional are
univariate wrapped Cauhcy distributions. Such a property is rare for directional statistics as
explained by Mardia’s comment in Pewsey and Garcia-Porugués (2021).

In this report, a new toroidal distribution whose marginal and conditional belong to the
same distribution family is proposed. Thit is considered as a bivariate version of the extended
wrapped Cauchy distribution (EWC) by Kato and Jones (2013) whose density has a form

£(0) = 1 1+ (ab)? — 2abcosv 1—a? 1-0?
C2r 1— (ab)? 1+a?2—2acos(0 —pu+v)1+b2—2bcos(0 — )’

where a,b € (0,1) and p,v € [—7, 7). Hereafter, when the random variable © is distributed as
the extended wrapped Cauhcy distribution, it is denoted by © ~ EWC(a, b, i, v). The marginal
and conditional of the proposed distribution is proved as the EWC in Section 2. The fitting
example is shown in Section 3. The concluding remarks of this report are provided in Section 4.

2 Proposition and property

Consider the function

1-p? 1—pf 1-p3

01,02) = ,
9(01,62) 1+ p%2—2pcos(bh £ 04+ 1) 1+ p3 —2p1 cosby 1+ p3 — 2py cos Os

where p, p1,p2 € (0,1) and v € [—m, 7). This is the product of three wrapped Cauhcy kernels.
The reproductive property of the wrapped Cauhcy distribution, or

m 1—a? 1-0? e — 1 — (ab)?
/;,r 27{1 + a? — 2acos(d — Y — pa)} 27{1 + b> — 2bcos(v) — up)} V= 27{1 + (ab)? — 2abcos(0 — pa — pv)}’

leads to the integrals of the function g(-,-) as

T 1— 2 1— 2
/ 9(91,92)6192 — o > (pp2) . P17 7
o 1+ (pp2)? — 2ppacos(by 4+ v) 1 + p? — 2p; cos by




and

T 1— (pp1p2)*
01,02)d61dby = (27)? .
/—w /—wg( 1,B2)dbrly = (2n) L+ (pp1p2)? = 2pp1p2 cosv

From this, the function

L 1+ (pp1p2)® — 2pp1pa cosv
(2m)? 1 — (pp1p2)?

is proven to be a probability density function whose marginal density is

f(01,00) = g(0r — p1, 02 — p2)

1 1+ (pp1p2)* = 2pp1p2 cosv 1— (pp2)* 1—pf
2 1= (pp1p2)? L+ (pp2)? = 2ppacos(0r — pu +v) 1+ pi — 2p1 cos(61 — 1)’

f(0h) =

or density of EWC(ppa, p1,1,v). Similarly, the marginal density f(f2) = ffﬂ f(01,02)db, is
proven to be EWC(pp1, p2, p2, £v). Let (01, 02) be the random vector of f(61,62). Then it is
apparent that ©1 | (©2 = 03) ~ EWC(p, p1,£02+v, u1) and O9 | (01 = 61) ~ EWC(p, p2, £01 £
v, i2).

The examples of the plots about the proposed density f(-,-) are displayed in Figure 1. From
this figure, it can be seen that the proposed distribution models a strong correlation. The
parameter p controls the correlation between 01 and ©9, and the parameters p; and ps contorol
the concentration of ©; and ©s. It is noted that small p also makes a strong correlation when
both p; and py are small as seen in Figure 1 (e).

Figure 1: The plot of the proposed distribution with 1 = pe = v =0, and (a) p =0,p1 = p2 =
0.3, (b) p=0.7,p1 = p2 = 0.3, (c) p=10.3,p1 = p2 =0.1, (d) p=0.3,p1 =04, p2 = 0.1, (e)
p=0.01,p1 = p2 =0.01, and (f) p = 0.01, p; = 0.1, p2 = 0.01.



3 Fitting example

To show the performance of the proposed distribution, this distribution is fitted to the direc-
tions of wind at 6:00 at two points ((Latitude, Longitude)= (429.768056°, —95.220556°) and
(Latitude, Longitude)= (429.397778°, —94.933333°)) in Texas from May 20, 2021, to July 31,
2003 which is taken from the Codiac data archive and is available a https://data.eol.ucar.
edu/dataset/85.034. The sample size is 73. Since these two points are close to each other,
the similar trends of the wind can be seen. The proposed distribution with fixing v = 0 is also
fitted to this dataset

The results of the maximum likelihood estimation are shown in Table 1 and Figure 2. The
proposed distribution without fixing v gives very small estimates about p, p1 and ps, and shows
a strong correlation while that with fixing v gives moderate estimates about all parameters, and
shows a strong correlation. In the sense of AIC and BIC, the case with fixing v provides a better
fitting. This might be seen from Figure 2.

Table 1: The maximum likelihood estimates of the proposed distribution (a) without fixing v
and (b) with fixing v = 0.

P p1 P2 141 142 v AIC BIC
(a) 5.62x10710 158 x107% 1.82x10726 223 291  6.10  548.66 562.40
(b) 0.71 0.52 717x 1075  3.18 3.31 0 (fixed) 405.52 416.98
(a) (b)

Wind Direction 2
3
|

Wind Direction 2

Wind Direction 1 Wind Direction 1

Figure 2: The contour plot of the fitted proposed distribution (a) without fixing v and (b) with
fixing v = 0.

4 Concluding remarks

In this report, a new toroidal distribution whose marginal and conditional are EWC is proposed.
The distribution can model a strong correlation. However, the role of the parameters might be



difficult to interpret as explained in Section 2. More studies about the proposed distribution
including the expressions of moments and Fisher information, random number generation, and
multivariate extension will be valuable for the intepretation and left as future research.
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Abstract. We prove that if X, Y are positive, independent, non-Dirac random variables
and if v, 8 > 0, a # f3, then the random variables U and V' defined by

_ v 4B(X4Y) _ I+a(X+Y)
U_Y1+aX+BY and V—X1+ax+6y

are independent if and only if X and Y follow Kummer distributions with suitable parameters.
In other words, the Kummer distributions are the only invariant measures for lattice recursion
models introduced by Croydon and Sasada. This result, which fits in the literature related
to independence properties of the Matsumoto-Yor type, extends earlier characterizations of
Kummer and gamma laws by independence of

U=9% and V=X (1+%),

1+X

which is the case of (a, 8) = (1,0). We also show that our Kummer independence property
yields, as limiting cases, several well-known independence properties.

1 The Matsumoto-Yor property and related literature

Consider, for b, ¢ > 0, the gamma distribution Gamma(b, ¢) with density proportional to

Y e V(0,000 (1),

forp e R,a > 0,b > 0, the generalized inverse Gaussian (GIG) distribution GIG(p, a, b) with
density proportional to
a:”_le_“z_b/zl(om)(x).

The Matsumoto-Yor property: for p,a,b > 0, given two independent, positive random vari-
ables X and Y such that X ~ GIG(—p,a,b) and Y ~ Gamma(p, a), the random variables

1 1 1

e V=« —
v X+Y’ X X+4Y

are independent (and follow the GIG(—p, b, a) and Gamma(p, b) distribution, respectively).



This property was discovered by Matsumoto and Yor (2001) in the case a = b, while
studying some functionals of exponential Brownian motion.

In Letac and Wesolowski (2000) it was noticed that it holds also when a # b and it was
proved that this independence property is in fact a characterization:
for two non- Dirac positive and independent random variables X and Y, the random variables
X+Y and 1 X+Y are independent if and only if X ~ GIG(—p, a,b) while Y ~ Gamma(p, a)
for some p, a,b> 0.

The detailed balance equation
Following Croydon and Sasada (2020), we say that a quadruplet of probability measures
(v, 1, v) on U, V, u,v, respectively, satisfy the detailed balance equation for a map F :
UxV —UxVif

Fluev)=Le7,

where F(p ® v) means (u®@wv)o F~L.

Using the terminology of Croydon & Sasada 2020, the Matsumoto-Yor property says that
the quadruplet of probability measures
1= GIG(—p, a,b), v = Gammal(p, a),
i = GIG(—p,b,a), v = Gamma(p, b) satisty the detailed balance equation for the map

P 0,007 = 0,00 () 5 (=t - )

r+y r Tty

In Koudou & Vallois 2012 we studied the question of finding decreasing and bijective
functions f : (0,00) — (0,00) such that there exist a quadruplet of probability measures
(p, v, 1, ) on (0, 00) satifying the detailed balance equation for the map

Ty : (0,00)* = (0,00)*

(@,y) = (f(@+y), f(z)— flz+y)).
This led, at the cost of some regularity assumptions, to other independence properties of
Matsumoto-Yor type, amongst which was a property involving the Kummer distribution.
For a,¢ > 0 and b € R, Kummer distribution K(a,b,c) is defined through the density
proportional to

a—1,—cx

w(lT)b I (0,00) (SC)
More precisely, it was proved in K. & Vallois (2012) that if X and Y are independent Kummer
and gamma with suitably related parameters then

_ _ 4 (X+Y) !
U = X + Y and V = W

are independent Kummer and beta random variables.

This was the starting point of a number of works on Matsumoto-Yor type characterizations
of the Kummer distribution.

Firstly, starting from the latter property and looking for an involutive version of it, i.e.
trying to find an involutive map F : (X,Y) — (U, V) for which the Kummer distribution is



involved in a detailed balance equation, the following interesting property was discovered in
Hamza and Vallois (2016): let X and Y be independent, X have the distribution K(a,b, c)
and Y have the gamma distribution Gamma(b, ¢), then

UZHLX and V:Xl“;fi;y (1)

are independent, U ~ K (b, a,¢) and V ~ Gammal(a, ¢).

In Piliszec & Wesolowski (2018) this independence property was proved to give a char-
acterization result with no assumption of existence of densities. Related characterizations
were considered in Wesotowski (2015) and Piliszec & Wesotowski (2016). In Kotodziejek &
Piliszek (2020), an extension to the matrix-variate case was established. In Piliszek (2022) a
free probability version of the property and characterization was given. The latter needed a
definition of a new distribution, a free analogue of the Kummer distribution.

A link between the detailed balance equation and a lattice recursion model as described
in Croydon & Sasada (2020) :

They considered models assuming the following dynamics: For (n,t) in Z?2, n is the spatial
coordinate and ¢ the temporal one.

For fixed t € Z,
(2))nez € (0,00)% is the configuration of the system at time ¢,
(Y8 )nez € (0,00)% a collection of auxiliary variables through which the dynamics from ¢ to
t + 1 are defined. Namely, (2, y!) depends on (21, y! ;) only,

(@, 9n) = G(a Y ), (2)

where for a bijection F : X x ) — X x 5/ either G = F, when n + ¢ is even or G = F~!
when n + t is odd.

The case when F is involutive is referred to as type I model, while the general case is
referred to as type II model.

Let # = (2,)nez be such that the above recursion with the initial condition 20 = z,,
n € Z, has a unique solution (!, (z), % (2))niez. Let X* denote set of all such z’s.

According to Theorem 1.1 in Croydon and Sasada (2020), for a type I model, a sequence
of iid random variables X = (X,,) ez with X7 ~ p satisfies X L (21(X)),ez, iff there exists a
probability measure v such that the pair (p, v) satisfies the detailed balance condition with
respect to F. That is, ¢ ® v is the invariant measure for the recursion described above.
In case of the type II model similar alternating invariance holds for pairs p ® v and i ® v
depending on parity of n + ¢.

In Croydon & Sasada (2020) the authors identified four such models:

e ultra-discrete KAV (Korteweg-de Vries): type I model with
Fla,y)=y—(e+y—J)s+@+y—K)y, 2= (@+y— K)y + (z+y—J)4) with p
and v the shifted truncated exponential or shifted scaled truncated geometric laws;



e discrete KAV: type I model with

(e, _ (y(+8 14
Fla,y) i= Fip” (w,y) = (U2, o))
with g the GIG law and v the GIG (gamma) law which, when o = 0, has a direct
connection with the Matsumoto-Yor property and related characterization of the GIG
and gamma laws;

e ultra-discrete Toda: type II model with

F(z,y) = Fur-(v,y) = (v Ay, © — y)

with u, v, @i the shifted exponential, 7 asymmetric Laplace or u, v, i shifted scaled
geometric 7 scaled discrete Laplace laws; this one is related to classical characterizations
of the exponential and geometric distributions from Ferguson (1964) and Crawford
(1966).

e discrete Toda: type II model with

F(z,y) = Far-(2,y) = (x +, ffy)

with u, v, i the gamma, v the beta laws having a direct connection with the charac-
terization of the gamma distribution given in Lukacs (1955).

For relations to box-ball systems and Pitman’s transform one can consult Croydon, Sasada
and Tsujimoto (2022) and Croydon, Kato, Sasada and Tsujimoto (2023). Recently, a connec-
tion between independence properties and Yang-Baxter equations holding for related trans-
formations were discovered in Sasada & Uozumi (2022)

In the context of the discrete KAV model, Croydon and Sasada (2020) observed that if
X and Y are independent, U and V, are independent and all four have GIG distributions
with suitable parameters, then (X,Y") and (U, V) satisty the detailed balance equation for
the map F (gf(ﬂ ), They also conjectured that the GIG distributions are the only possible ones
which let this Fé}"(’ﬁ )_detailed balance equation be satisfied.

Recently, in Letac & Wesolowski (2022) this conjecture was proved without the assump-
tions of existence and regularity of densities made by Bao & Noack in their proof of the same
conjecture.

More precisely, Letac & Wesolowski (2022) established the following extension of the Matsumoto-
Yor property: if A and B are non-degenerate, positive and independent random variables,
and if o and (3 are two positive and distinct numbers, then the random variables

_ 1pA+B _ 1BA+B
S_BaA+B’ T_AaAJrB

are independent if and only if A and B have GIG distributions with suitable parameters.

Our work shows one more candidate for an invariant measure for a lattice recursion model.
We derive the detailed balance equation for the Kummer distributions.



Specifically, we give a characterization of the Kummer laws, which is of a similar nature
as in Letac & Wesolowski (2022) for the GIG laws, i.e. it says that the Kummer distributions
are the only possible ones which let the detailed balance equation be satisfied for the map

_ Lp(aty) . Ltalaty)
F(I’ y) - (y 14+az+By° € 1+az+5y) :

The proof uses a suitably designed ” Laplace-type” transform and leads to a special second
order linear differential equation for an unknown function of such form. In this sense the
general methodology resembles that of the proof from Letac & Wesolowski (2022). However,
at the technical level, the challenges were of quite a different nature. Interpreting this result
in the context of the lattice system of recursions described above, it says that the Kummer
distributions are the only relevant invariant measures for the type I model governed by the
F' defined above.

2 A new independence preserving property of Kummer
laws

It will be convenient to introduce a scaled version of the Kummer distribution.

Let Ku(a,b;c) for « > 0, a,c > 0 and b € R be the probability distribution defined by
the density

a—1,—cx

f(@) < s Lo.00) ()

Remark: Note that Ky(a, b;c) = G(a; ). Also K, (a,0;¢) = G(a;c).

Theorem 2.1 (K., Wesolowski, 2023)
Assume that
(X,Y) ~ Kola, b;c) @ Kg(b, a; ¢)

fora,b,c>0 and a,f >0, o # 3. Let

14+8(X+Y 1+a(X+Y
U=Y 1+a(X+/3Y) and V=X 1+a(X+ﬁY)' (3)
Then
(U, V) ~ Ku(b,a;¢) @ Kg(a,b; c).

Remark : Note that the above result gives a straightforward extension of one of the
properties seen earlier. It suffices to take (o, 8) = (1,0).

Theorem 2.2 (K., Wesolowski, 2023)
Let a, 8 > 0, a £ . Let X,Y be positive, independent, non-Dirac random variables and

define
_ v LHB(X+Y) _ v La(X+Y)
U_Y71+QX+[3Y and V_X71+(1X+BY'



If U and V are independent, then there exist a,b,c > 0 such that
(X,Y) ~ Kula,b;c) @ Kg(b, a; c).

We then have
(U, V) ~ Kalb, a; c) @ Ks(a, b; c).

3 Recovering well-known independence properties from
our result

We show that our Kummer independence property yields, as limiting cases, several well-

known independence properties: the Lukacs property (Lukacs, 1955), the Kummer-Gamma

property (K.& Vallois, 2012), the Matsumoto-Yor property (Matsumoto and Yor, 2001, Letac
& Wesotowski, 2000) and the KdV property (Croydon and Sasada, 2020).

We will rely on the following version of Th. 5.5 from Billingsley (1968):

Theorem 3.1 Let X, A X, with X,, and X assuming values in a separable metric space S.
Let ¢, ¢ 1 S — S be measurable functions such that for any x € S and any sequence x,, — x

we have ¢ (x,) — ¢(x). Then
d

Pn(Xn) = O(X).
Proposition 3.2 If « — oo then
e when a > b, Ky(a,b,c) = Gamma(a — b, c).

e when b < a, Ki(a,b,c/a) 5 Betas(a,b — a), where Betar(p,q) law with p,q > 0 is
defined by the density

P!
f(@) o e Lo
e when b >0, Ky(ab+ ar,ab+ ay, ¢) = GIG(a; — as, ¢, b).
e when b >0, Kuo(ay/a+b,a/a,c) = Gamma(b, c).

e when b >0, K,(aa,aq + b, c/a) = InvGamma(b, c), where InvGamma(b, c) is defined
by the density
Fla) oca™ e Lo ooy (2).

3.1 The Lukacs property

Theorem 3.3 Assume that (X1, Y1) ~ Gamma(ay,c) ® Gamma(by, ¢). Let
(U, V1) = ()%a Xy +Y1) .

Then
(U1, V1) ~ Betas; (b1, a1) @ Gamma(a; + by, ¢).

10



Proof : We use our theorem with o = n, 8 = 0 to see that
(Xl(")7 Y1) ~ Kp(ay + by, b1, ¢) @ Gamma(by, ¢)
implies that for

ou(.y) = (i, )
we have
¢n(X1("), Y1) ~ Ki(by, a1 + by, ¢/n) @ Gamma(a; + by, ¢)

and we take the limit as n — oo.

3.2 The Kummer-Gamma independence property

Theorem 3.4 Assume that (X, Y3) ~ K(ag, as + by, c2) ® Gamma(bs, ¢o). Let

X2

1
(U, Va) = <X2 + Y5, H;X21+Y2> .

Then
(Ua, V) ~ K(ag + ba, as, ¢2) @ Betas(as, ba),

where Betar(p, q) has the density f(y) o< y* (1 —y)T 1 01)(y)-

Proof : We use our theorem with o = 1 and 8 = n to see that
(X, Ya™) ~ Gy (a9, ag + by, ¢3) @ K (ag + by, as, ¢3)

implies that for

Ou(r,y) = (y 52 g i)
we have _
Gn(Xa, Ya) ~ Ky (az + b, @z, c2) ® Ky (az, as + by, ca/n).

3.3 The Matsumoto-Yor property
Theorem 3.5 Assume that (X3,Ys) ~ GIG(—ag, bs, ¢3) ® Gamma(as, b3). Let

U, 0) = (kv % — i) -
Then
(Us, V3) ~ GIG(—ags, c3,b3) ® Gamma(as, c3).

Proof : We use our theorem with a = n and 8 = n? to see that if
(XPE"), Yg(")) ~ K, (nes,nes + ag, by) @ K,2(nes + ag, nes, bs)

then with

7 o 14+n?(z+y) 14+n(z+y)
¢n(x7 y) - (y 1+nz+nZy’ nx Ttnatnly

we have

(En (ngn)> Y:%(n)) ~ K:n(nCS + as, ncs, bS) & ’Cn(n037 necg + as, bS/n)

11



3.4 The discrete KdV independence property

Theorem: Assume that

(X4, Y3) ~ GIG(—ay, aby, cs) @ GIG(—ay, Bey, by).

_ 1+aX4Y: 1+8X4Y)
Let (U, Vi) = (YidE9s, X, 2250 ) | Then

(U47 ‘/21) ~ GIG(—G4, Ay, b4) ® GIG(—(I4, ﬁb47 04).
Proof: We use our theorem with « changed into n/a and § changed into n/fg we see

that if
(Xin)y Y4(n)> ~ Ko (nbs + ag, nby, cs) @ Ky, 5(nby, nby + ay, c4)

then with
)

bite) = (v i)

5n (Xin)7 Y4(n)> ~ Ko ja(nby, nby 4 ay, c4) @ Ky, y5(nby + ag, nby, cq).

4 Sketch of proof of the main result

For a positive random variable W and v > 0 consider an extended Laplace transform L%},) of
the form

L&p(s, t,z)=E 1+”7/;V e W,
We will call it the Kummer transform. Note that the Kummer tranform is well defined at
least for s,z > 0 and ¢t € R. Moreover, for any fixed s > 0, ¢t € R, the Kummer transform
as a function of z > 0, is just the Laplace transform of the measure %Pw(dw), so it
uniquely determines the distribution of W.

Note also that

L (s,t,2) + 7L (s +1,t,2) = LY (s, — 1, 2) (4)
and for any k =1,2,...
(v)
PR — (1) LG5+ K 1, 2) (5)

Proposition 4.1 Let X ~ K,(a,b,¢), a,c >0, b €R. Then

T'(a+s)U (a+s a+s—b—t+1,

c+z>
a)U(a,a b+1, E) ’ (6)

L&(s,t,2) =

s>0,t€R, z>—c, where U is the Kummer function (see 13.2.5 in Abramouwitz & Stegund,
1984) defined by

U(a,b,z) = p(a /0 (Hﬁsigiw e % du, a,z>0,beR. (7)

12



Proposition 4.2 Letb € R, a,c,a > 0. Assume that for some fized (s,t) € (0,00) X R and
all z >0
Lg?)(s,t,z):k(s,t)U(a+s,a+sfbft+1,Csz), (8)

where k(s,t) is a constant (depending also on a,a,b,c) Then X ~ Ky(a,b,c).

Denote

— (o WLty . 1dalety) ) .
1/’(510’9) - (y 1+az+py° T 1+az+5y> _' (U,'U), €,y > 0

Note that ¢ : (0,00)? — (0, 00)? is an involution. Moreover, we have the following identities:

T+y=u+uv, (9)
o = T (10)
1+yaa: = lfﬁv' (11)

Using these identities we have the following:

Lemma 4.3 Let X and Y be independent. Assume also that U and V' as defined in (3) are
also independent. In view of (9), (10) and (11) we then have

L (s,t,2) LP(t,5,2) = L(t,5,2) L\ (s,1,2),  (s,t,2) € (0,00) x R x (0,00).  (12)

Differentiating the above equation with respect to z and dividing side-wise by the same
equation we get

L (s+1,,2) |, LD (141,8,2) _ L (t41,s,2) | L (s+1,t,2) (13)
L (s,t,2) LY (t.s,2) L) (ts,2) LP (st2)

Using identity (4) we obtain

ﬁ Lg?)(s,tfl,z) +a Lg)(t,sfl,z) o 6 Lg!)(t,sfl,z) + Lg)(s,tfl,z)

L8 (s,,2) L3P (1,5,2) L (1,s,2) L (st,2)
After some calculations we get
B Mx(s,t,z) +aMy(t s, z) = My(t,s, z) +aMy(s,t, z), (14)
where LD (s41,t,2) L4 (s,641,2)
My (s, 2) = Lg)(s,t,z)L(V}’(V;l,tJrl,z)'
Note also that (12) implies
Mx(s,t,2) My (t,s,z) = My(t,s,z)My(s,t, z). (15)

Combining (14) with (15) we get
(B Mx(s,t,2) —aMy(s,t,2)) (Mx(s,t,z) — My(t,s, z))
(BMy(t,s, z) — aMy(t,s,z)) (My(s,t,z) — My(t, s, z))

It follows from (16) that either S Mx = a My or Mx = My and from (17) that either
B My = a My or My = My.

=0
=0.
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e We prove that 8 Mx = a My is impossible. It will follow by symmetry that also
8 My = « My is impossible.

e Then, we treat the case My = My. The case My = My will follow by the analogous
approach.

We consider the equation

Mx(s,t,2) = My(t,s,z), s,te{0,1,...}, z>0. (18)
Denote
 Lx(s+1,0)Ly(ts)
Als 1, 2) = T DEuttarn) (19)
and

. Lu(t+1,5)Lx (s;t)
B(t,s,2) = T Gaix ) (20)

where we skipped the superscript () and the argument z in Ly and L.

Note that (18) implies that for all s, € N= {0,1,...} we have
A(s,t,z) = A(s,t+1,z) and B(t,s,z) = B(t,s+1,2).

Consequently, for (s,t) € N?* we have A(s,t,2) = A(s,0,z) =: A(s,2) and B(t,s,2) =
B(t,0,z) =: B(t, z).

Now (18) can be written as

Lx(s,t) o Ly (t,s)
Als,2) xirrern = B 2 s

Consider now the quotient

A(s,z) _ Lx(s+1,t+1)Ly(t,s)
B(t,z) ~ Lx(st)Ly(t+1,s+1)"

We differentiate this quotient with respect to z, and after some further calculations we

obtain that thls derivative is equal to 0, and thus g((ig = %, where a(s) := A(s,0) and

b(t) := B(t,0). Consequently, we have the representations:

A(s,z) = f(2)a(s) and B(t,z) = f(2)b(t), z>0, s,t €N, (21)
_ A(0,2) _ B(0,2)
where f = 20 = B0y
We thus have
Lx(s,t,z) o Ly (t,s,2)
a(s) LX(;(+1,t+1,z) - b(t) LU(t[fy-l,s-s-l,z)' (22)

The above equation transforms to the second order diferential equation for the function
h:= Ly(t,s+ 1) as follows

alc+2)h"(z) 4+ (ab(t) — als)) — (¢ + 2)) W' (z) — b(t) h(z) = 0.
Consequently, for g defined by g(z) = h(az — ¢) we get the Kummer equation

29"(2) + (b(t) — a(s) — 2)g'(z) — b(t)g(2) = 0. (23)
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It is well known that the general solution is of the form
9(2) = ctM(b(t), b(t) — a(s), 2) + U (b(t), b(t) — a(s), 2),

where (see 13.2.1 in [?]), for b > q,

1
T'(b a—1 z
M(a,b,2) = 5o / e e dt.
0

Recall that M (a, b, z) is unbounded when z — oo (see e.g. 13.1.4 in [?]) and U(a, b, z) — 0 as
2z — 00. Since g, as a Laplace transform of a probability measure, is bounded, we necessarily
have

g9(z) = cy(s,)U(b(t),b(t) — a(s), 2).
Returning to Ly (t, s) (recall that g was defined through Ly (¢, s + 1)) we get
Ly(t,s,z) = cy(s,t)U(b+t, b+t —a—s+1,52),

with a,b > 0 and ¢ > 0.

Changing the roles of Ly and Ly in the above argument we obtain

Lx(s,t,z) = cx(s,)U(a+s,a+s—b—t+1,2),

A technical argument yields ¢ > 0 and Proposition 4.2 implies that X ~ K,(a,b, c) and
U ~ Ku(b,a,c). The sequel of the prove is technical and we refer to Koudou & Wesotowski
(2023) for details.
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Acceleration of the EM algorithm

Masahiro Kuroda

Okayama University of Science

1 Introduction

The expectation-maximization (EM) algorithm of Dempster et al. (1977) is a well-known iterative algorithm
for finding maximum likelihood estimates from incomplete data and is used in several statistical models with
latent variables and missing data. The algorithm also monotonically increases a likelihood function at each
iteration and satisfies parameter constraints for convergence The popularity of the EM algorithm stems from
its stable convergence, simple implementation and flexibility in interpreting data incompleteness. Despite
these computational advantages, the algorithm is linear convergent, and its speed of convergence is very slow
when a statistical model has many parameters, and the proportion of missing data is high.

Kuroda and Sakakihara (2006) proposed the e-accelerated EM algorithm that accelerates the convergence of
the sequence of EM iterations using the vector e algorithm of Wynn (1962). Wang et al. (2008) proved the
theoretical properties of the convergence and acceleration of the e-accelerated EM algorithm. The merit of
the e-accelerated EM algorithm is that it requires only the sequence of EM iterations but it does not require
estimates of information matrices or convergence rates during iterations.

In this paper, we introduce the e-accelerated EM algorithm. Section 2 presents the EM algorithm. Section
3 describes the vector ¢ algorithm. In Section 4, we show the e-accelerated EM algorithm.

2 The EM algorithm

Let y denote the incompletely observed data in a sample space €2, and x denote the complete data augmented
from y in a sample space 0x. Assume that y is missing at random. Let f(-|@) denote a density function
with an unknown p-dimensional parameter vector @ = (61,...,0,)" in a parameter space Q9 C RP. Let
1,(0) =1n f(y|@) and ¢.(6) = In f(x]6) denote the log-likelihood functions for y and x, respectively. Then,
we have

£o(0) = £(0) —In f(x]y,0),

where f(x|y,0) = f(x]0)/f(y|0) is the conditional density function of x given y. We define the @ function
that is the conditional expectation of ¢.(0) given y and 0’'(€ Qg) as

Q(816") = E[(.(0)]y.0'].

To seek the maximum of ¢,(0), the EM algorithm solves

9Q(0]0)

S =0 (1)
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The EM algorithm finds a stationary point 8* of Equation (1) by alternately iterating between the expectation-
step (E-step) and the maximization-step (M-step).

Let 81 denote the estimate of @ at the t-th iteration of the EM algorithm. The E-step calculates Q(8]0®)
to obtain the conditional expectation of the missing data given y and (). The M-step finds 8¢+1) by
maximizing Q(8]8")) with respect to . We describe the EM algorithm in Algorithm 1.

Algorithm 1 The EM algorithm

E-step: Calculate Q(8|0%) = E[(.(0)]y,0®)].
M-step: Find 8¢+1 to be a value of 8 € Qg which maximizes Q(8|6™):

0 = arg maxQ(06™).
0cQp

Usually, the iteration of the algorithm is terminated when the following criterion holds:
Lo(8FDY — £,(00) <5 or [0FD — 0Dz <6,
where || - || is the Euclidean norm and ¢ is the desired accuracy.
Dempster et al. (1977) showed that £,(81) is increased after an EM iteration, i.c.,
(o(0U1) = €,(61)
for t =0,1,.... Thus, if {Zo(O(t>)}t20 is bounded above, the convergence of the EM algorithm is obtained.

Dempster et al. (1977) and Wu (1983) provided the convergence theorems for the sequences {£,(0®)};>0
and {0®)},>0, respectively.

The EM algorithm implicitly defines a mapping M from Qg to g such that
0+ = M (eW) (2)

for t = 0,1,.... Suppose that {8§(V};5¢ converges to 8%, and M () is differentiable at 8*. Then, 6* is a
fixed point of the algorithm, i.e., * = M(0*). The Taylor series expansion of Equation (2) at 6* yields

0+ — 0" = DM(6*)(0) — 0*) + O(]|0") — 6*|?), (3)

where

DM(6) = (mg;ie))

is the Jacobian matrix for the mapping M(0) = (M (0),..., M,(0))". Thus, in the neighborhood of §*, the
EM algorithm is essentially a linear iteration with the iteration matrix DM (0*). For a sufficiently large ¢,
0 tends to be very close to 8%, and then, Equation (3) becomes

ot —9* = A(0" —0") + O(|[0") — 07|?), (4)

where A € [0, 1) is the largest eigenvalue of DM (6*) (Schafer, 1997). The EM algorithm converges slowly for
a large value of A\. Dempster et al. (1977) showed that the global rate of convergence of the EM algorithm
is governed by the largest eigenvalue of DM (6*).
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3 The vector ¢ algorithm

The vector € (ve) algorithm presented by Wynn (1962) is an extrapolation method and is utilized to accelerate
the convergence of a slowly convergent scalar sequence. It is known that the algorithm is very effective for
linearly converging sequences.

Assume that {9(t>}t20 is a vector sequence generated from an iterative algorithm and converges to 8*. We
define the inverse [8()]~1 of a vector ) as

”10)
o0t = 7
O = oy

The ve algorithm for a sequence {O(t)}tzo starts with
etV =0, et0) — g
and generates a vector e(:F+1) by

g(th+1) — g(t+1h=1) 4 [€(t+1,k) _ E(t’k)] -1 . 5)

We apply the ve algorithm for £ = 1 to accelerate the convergence of {0<t)}t20. From Equation (5), we have
e g+ [€<t+1,o> - €<z,0)] . {€<t+w) _ €<t,o>] -

et2) — g(t+LD) | [E(t+l,l) _ E(t-i)]‘l.

Since

~1 -1
(b — [e(t+1,o) _ E(z,o)] 7 S+ [E(t+2,0) _ E(t+1,0)]

)

the ve algorithm is given by

e(t2) — g141,0) Hs(tu,o) -~ E(HI*O)} - [E(H»I,O) _ s(z,o)]fl} -

1 —1771
—o® 4 Homl) _ 0@)] _ {9(0 _ 9<f*1>} } . (6)

(2

Then, the sequence {e(“?},5( converges to 8* faster than {8(V},5.

4 The vector ¢ acceleration of the EM algorithm

Kuroda and Sakakihara (2006) proposed the e-accelerated EM algorithm that can accelerate the convergence
of the EM algorithm by using the ve algorithm. The algorithm combines the ve acceleration (6) with the
EM algorithm and generates a faster convergent sequence than {0<t)}t20. We describe the e-accelerated EM
algorithm in Algorithm 2.

The e-acceleration step is added to accelerate the convergence of the sequence using the vector £ accelerator
and does not depend on statistical models. Thus, the e-accelerated EM algorithm accelerates the convergence
without affecting its simplicity and stability.

Wang et al. (2008) provided theoretical results of the e-accelerated EM algorithm.
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Algorithm 2 The e-accelerated EM algorithm
EM step: Find 80¢+D = M(91).
e-acceleration step: Compute (=) from (0@*1),0(’5)7 0(’5“)) using

D Z ) 4 He(t+1) — 9(t)]—1 3 {a(t) _ 0(t71)]_1]*1.

Repeat the two steps alternately until ||op¢=1) —ap(t=2))2 < 6.

Theorem 1 Suppose that the sequence of EM iterates {O(t)}tzo converges to a stationary point 0*. The
sequence {1#(’5)},520 generated by the e-accelerated EM algorithm converges to a stationary point 0* of the
EM algorithm.

We evaluate the speed of convergence of the e-accelerated EM algorithm. For the parameter vector 8, the
iterative procedure {0(t>}t20 is said to converge linearly if

=1 He(t+1> - 0"
c = l1m N
t—o00 HG(U — G*H !

where ¢ is some constant and 0 < ¢ < 1. The sequence of EM iterations converges linearly and the largest
eigenvalue \ of DM (0*) corresponds to ¢. To compare the convergence of the e-accelerated EM algorithm
with that of the EM algorithm, we use the following notion given by Brezinski and Redivo Zaglia (1991).

Definition 1 Let {A,,},,>0 be a sequence of scalars, and {An}nzo be the sequence generated by applying an
extrapolation method ExtM to {Ay}n>0, where A, is determined from A,,, 0 < m < L, for some integer
L,,n=0,1,.... Assume that lim A, = lim A, = A. Then, we say that {A,}n>0 converges more quickly

than {An}nZO Zf

lim |4n — A] =

A, — A

If the above limitation holds, we also say that the extrapolation method ExtM accelerates the convergence
of {An}n>0. For a sequence of vectors, {A,,},>0, in some general vectors space, the definition is still valid,
provided we replace |A,, — A| and |Aj,, — A| everywhere by ||A,, — A|| and ||A;, — A, respectively, where
I - || is the norm in the vector space under consideration.

The following theorem shows that the convergence of the e-accelerated EM algorithm is faster than that of
the EM algorithm.

Theorem 2 Assume that {0};5¢ is the sequence of the EM iterations and the sequence {1p®};>¢ is
generated by Equation (6). Then, we have

t) _ g*
lim Hd) H =

o0 ||0(H2) — 9%]| =0 )

That is, {1 },;50 converges to @ more quickly than {81 },5q does.

We describe the pseudocode for the e-accelerated EM algorithm in Algorithm 3. The algorithm can be easily
implemented in R.
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Algorithm 3 Pseudocode for the e-accelerated EM algorithm

1: 01 — M(6y); > The EM algorithm
2: P « O1;

3. itr «— 1;

4: while itr < maxitr do > maxitr: the maximum number of iterations
5: 0y — M(6,); > The EM algorithm
6: ABy — 6, *00; A6, <~92*91;1

7 P — 6 + “Aeﬂ o [ABO} 71} ; > The ve acceleration
8: if |91 — 9o||? < & then

9: Termination of iterations
10: end if
1 thy — Py

12: 00 — 01; 01 — 02;
13: itr «— atr + 1;
14: end while
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Asymptotic Property for Generalized Random Forests
(—bZ > R o7+ LR M3 2 EnE0MHE)

Hiroshi Shiraishi* , Tomoshige Nakamural |, Ryuta Suzuki*

In this paper, we discuss asymptotic property of the generalized random forests (GRF) estimator introduced
by Athey et.al (2019). Athey et al. derived asymptotic normality of the GRF estimator, but they do not
explicitly derive the rate of convergence and asymptotic variance. Scornet (2016) also discusses asymptotic
normality of the RF estimator with respect to increasing number of trees. On the other hand, we consider

asymptotic normality of the GRF estimator with respect to increasing sample size n as well as number of trees.

Model Suppose that (X1,Y7),...,(X,,Y,) are i.i.d. observations from the model with distribution function
F, where (X;,Y;) takes value X x Y CR? x Rfori=1,...,n, and p > 1 is a fixed integer. We are interested
in a function parameter 6 = (6(x))zex € © := {0 : X — Y} defined by a local estimation equation of the form

E [g)(Y:)|Xi =2] =0 forallz € X (1)

where ¥.(+) : ¥ x X — R is some scoring function. This setup encompasses several key statistical problems such
as conditional means, quantiles, average partial effects, etc (see, Athey et.al (2019) ). In this paper, we consider
two nonparametric estimation methods, generalized random forests (GRF) estimation and Nadaraya-Watoson

(NW) estimation, for estimating the 6.

GRF estimator GRF estimation introduced by Athey et.al (2019) is to first define some kind of similarity
GRF

weights a7 (x) that measure the relevance of the i-th training example to fitting 6 at a fixed x € X, and then

fit the target of interest via an empirical version of the estimating equation:

n

Do (@)dy, (V)

OSRF (1) € arg min {
i=1

yey

} for all z € X. (2)

When the above expression has a unique root, we can simply say that éGRF(_E) solves

n

ZazGRF(I)wy(Yz) =0

=1

with respect to y € Y for a fixed 2 € X. In order to define the weights «;(x), we first grow a set of B trees

indexed by b =1,..., B and, for each tree, define Ly(z) as the set of training examples falling in the same “leaf”
as z. The weights a&RF (z) then capture the frequency with which the i-th training example falls into the same
leaf as x:
¢ LixieLo(@)}
GRF GRF GRF i€Ly(w
Q; xr) = E ag U (x), o (x) = . 3
i ( ) B ~ bi ( ) bi ( ) ‘Lb(l‘” ( )

*Faculty of Science and Technology, Keio University
TFaculty of Health Data Science, Juntendo University
fGraduate School of Science and Technology, Keio University
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The main difference between GRF and other non-parametric regression techniques is their use of recursive
GRF

defined below is important motivated by the empirical success of regression forests across several application

partitioning on subsamples to generate these weights « . In particular, construction of the sets Lj(x)
areas.

Before the construction of Lj(x), we firest introduce a splitting rule which corresponds to that of Athey et.al
n be the sequence of i.i.d. observed data, and let s = s(n) be a subsample

,,,,,

size. Define a family of the index set by

Ay = {A: {AT, A7}, AT, A7 C {12, np|AT N A7 = 0,|A%| = | 2|, |47] = E]}
where the elements of A, are different from each other. For any A = {A%, A7} € A,, we define subsamples
I and Js of D, by Iy = Dyz and Js = Do with Dy = {(X;,Y;)}ica-, respectively. This sampling scheme
is called the double-smpling, and thanks to the double-smpling, we achieve “honesty” by dividing its training
subsamples into two halves Zs to place the splits, and s to do within-leaf estimation.

Only using Js-sample, the splitting rule is defined as follows:
Given J,-sample, we define a sequence of partitions Py, Py, -+ by starting from P; = X and then, for some
je{l,...,p}, construct Ppyq from Py by replacing one set (parent node) P € Py by (childe node) C; := {a =
(x1,...,2p) € Plz; < (¢} and Cy = {z = (21,...,2p) € Plz; > (}, where the split direction j € {1,...,p}
and the split position ¢ = ((j) € {X;;|X; = (Xi1,...,X;p) € P} are chosen to maximize a criterion A(C, Cy).

Furthermore, we impose the following specifications for the splitting rule.

Specification 1. (S.1) (w-Regular) Every split puts at least a fraction w of the observations in the parent node
into each child node, with w € (0,0.2].

(S.2) (Random Split) At every split, the probability that the tree splits on the j-th feature is bounded from below
by some ™ >0, forall j=1,...,p.

(S.3) (PNN (Potential Nearest Neighbor) k-set) There are between k and 2k — 1 observations in each terminal
node.

(S.4) (Subsample size) Subsample size s scales s = n® for some B € (0,1).

Remark 1. GRF by Athey et.al (2019) is defined some criterions A(Cy,C2). But in this paper, we do not
specify the criterions since the asymptotic normality can be derived under the above specifications. This means
our result is applicable for the “honest” CART by Athey and Imbense (2016) , or the median splitting by Breiman
(2001).

Under this splitting rule, we denote a given partition of the feature space X by A, and the subspace (leaf) of
rectangular type created by the partitioning by L, (¢ =1,...,|A]). Then,

[A]
A=ADp,&) ={L1,....Liaj}, X=QQLe, LiNLy =2 (L#1)

=1
where ¢ is a random variable taking a value in Ag with P(§ = A) = | A,|~! for any A € A, and the double-
sample (Zs, Js) is identifiled based on (D,,, ). Fix a test point € X and construct A in the above manner,
based on a selected Js-sample. Now, let B be the number of trees, and suppose that random variables &1,...,&p
are randomly generated. Together with a fixed D,,, we from (D,,,&1), ..., (Dpn,&p). Then, generate the sequence
(Zs, Ts) of (Zs1, Ts1)s - -+ s (Zsp, Tsp)- Since A is identified for each (Zs, J5), we denote A(D,,,&1), ..., A(Dp,ER).
For each A(D,,&) (b=1,...,B), define Ly(z) € A(D,,,&) as a leaf containing = € X.
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NW estimator Nadaraya (1964) and Watoson (1964) have considered estimates of a regression function
nonparametrically using some kernel function. In this paper, we introduce a Nadaraya-Watoson type estimator
(NW estimator) of 6 defined by (1) as follows:

n

> aiW(@)yy (V)

OV () € arg min {
i=1

yey

} for all z € X. (4)

The difference between 6% and §NW is just difference of the weight functions a®RF = {afRF} and oW =
{aMW1. Note that the oW defined below, is oracle statistics which means that the objective function
E [U)g(,,)(Y)\X} in (1) is unkwon, but, oW is defined by using E [wg(w)(Y)|X], Defin a function u : X2 — ) by

u(z,2') = E [to(e) (V)| X =2'] .

Basedon D,, = {(X1,Y1), ..., (Xn, Ys)}, we introduce a random process U := (U(z))zex by U(z) = {U1(2),...,Un(x)}
with

Ui(z) = u(z, X;) = E [y (Yi)|Xi], i€{1,....n}.

In addition, we introduce F7 ;; as the empirical distribution function of U, that is,

z 1
FniyU(Z) = ﬁ Z l{Ui,(x)Sz}
i=1

for all (z,2) € X x Y. Then, alWV is defined by
K <Ff,u(Ui(I))—Fﬁ,U(0))
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i Fr (U, (@)~ Fz ,(0)
Zj:lK( - = )

NW(.T)

for all x € X, where a,, is a bandwidth, K is a Laplcase kernel function given by

1
K(z):iexp(—\zD, ze).

Asymptotic normality for GRF and NW estimators Before the statement of theoretical result, we

impose the following assumption for the model

Assumption 1. (A.1) There exists 2nd order moment, and strictly positive, continuous p.d.f. of (X,Y) on
X x ).

(A.2) (Lipschitz x-signal) M,(x) = E [¢,(Y)|X = x| is Lipschitz continuous on X .

(A.3) (Smooth identification) M, is twice continuously differentiable at y = 6(x) with a uniformly bounded
second derivative, and that M@(z)(l‘) = 0y My ()| y—g(z) is invertible for all x € X.

(A.4) (Lipschitz (8)-variogram) |[Var (1, (Y) — ¢y (Y)|X = )|, < Ly — ¢/|.
(A.5) (Regularity of 1) 1y = X\y+(, where Ny is Lipschitz continuous in y, ¢, is monotone and bounded function.

(A.6) (Ezistence of solutions) There exists 09RF (x) and >, aiGRF(x)wéGRF(x)(Ym < Cmax {afRF (z)} for

some constant C > 0.

(A.7) (Convezity) The score function 1, is a negative sub-gradient of a convex function, and the expected score

M, is the negative gradient of a strong convexr function.
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GRF

Regarding the difference between « and oW, we have the following result.

Theorem 1. Under Specification 1, Assumption 1, and a, = (s/2)71

max oS~ oV =0, (ﬁ)

ie{l,...,n} n
where || - ||x s an uniform norm over X (i.e., ||fllx = sup,cx |f(2)])-

The proofs of the theorems and corollary are given in Section 5. Now we introduce
U (2,y) = > af @)y (Vi), Y () =Y oWV (@)ehy(V7)
i=1 i=1
for all (z,y) € X x Y. Thanks to Thereom 1, the difference between USFY and UNW are negligible with order

Corollary 1. Under Specification 1, Assumption 1, and a, = (s/2)7!

S
S =y = (12

where || - [[xxy is an uniform norm over X x Y (i.e., || fllxxy =sup( yexxy [f(@,9)])-
Next, we consider asymptotic normality for UNW by some modification of Schuster (1972) or Stute (1984) .

Theorem 2. Under Assumpton 1, and a,, = (s/2)7L, for any fived (v,y) € X xY and M, (z) = E [, (Y)|X = 7]

{\IJNW z,Y) }%N(OVJJ,Z))

where V(x,y) = [, eyK z)dzVar (1, (Y)|X = x) = +Var (1, (Y)|X = ).
Thanks to Theorem 2 and Corollary 1, we have the followings;

Theorem 3. Under Specification 1, Assumption 1, and a, = (s/2)71, for any fized x € X°,

ﬁ{gGRF( ) — O(x)} 4 N (0,0%(x))

V(z,0(z))

where o%(z) = Wiz @)

Remark 2. The Cramér-Wold device may be applied to show that ‘/% {éGRF(m) - H(m)} converges jointly

in distribution at finitely many points 1, . .., T with éGRF(Jrl), A éGRF(

(see Stute (1984) ). This result and Theorem 3 imply that we have

ﬁ(eGRF a)ie in X

where G is a Gaussian process with mean zero and a covariance function

xy) being asymptotically independent

Cov (G(z),G(2") = 1w o?(2).
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1 Introduction

Let © be a random variable representing an angle taking a value between
—m and 7, and X be a random variable taking a non-negative or real value.
The probability distribution of the pair (©, X) is called a statistical model
on cylinders or a cylindrical distribution. Similarly, a cylindrical dataset
indicates a set of values taking on [—m,7) X Ry or [-m,7) x R. Such data
can be found in various fields such as environmental studies, biology, and
sports, and have been analyzed by various researchers. The relationship
between wind direction and concentration of sulfur dioxide SO9 has been
studied by Garcia-Portugués et al. (2014). The direction and speed of the
currents in the Adriatic Sea have been analyzed by Lagona et al. (2015)
through a hidden Markov model having the cylindrical distribution of Abe
and Ley (2017) as a component.

Several statistical models on the cylinder have been proposed by Johnson
and Wehrly (1978), Mardia and Sutton (1978), Kato and Shimizu (2008),
Abe and Ley (2017), and Imoto et al. (2019). For a pair of random variables
(©,X) € [-m,m) x Ry, Johnson and Wehrly (1978) propose a probability
density function of the following form

()\2 _ H2)1/2

fow1(0,x) = o

exp (—Az + kxcos(d — ),

*Faculty of Economics, Takasaki City University of Economics
fDepartment of Data Science, Nanzan University
Faculty of Economics, Hosei University

28



where circular location p € [—m, ), linear dispersion A > 0, and k € [0, \)
controls circular-linear dependence. On the other hand, they also propose
the following density function for (0, X) € [-m,7) x R:

—k2/(402) N2
eexp{_@u)

fowa(0,2) =C > 572

KT
+ —cos(fd — },
2mo o? ( )

_ Kk K2 > K2 K
where 01 = 27r{[0 <U’;> I <402> +23 (w) I (;;) } I.(2)
=1

is the modified Bessel function of the first kind and order o, ¢/, € R,
o >0, and k > 0. As can be seen from these equations, the first distribu-
tion requires the intractable constraint (i.e., 0 < k < A) for the parameter
space, while the second distribution has a normalizing constant expressed
as an infinite sum of special functions. Abe and Ley (2017) proposed the
tractable density function of (0, X)) with a simple normalizing constant and
no complicated parameter space constraints,
af”

far(0,2) = 9 cosh(x) (14 Asin(@ — p)) 2% *

x exp {—(Bx)* (1 — tanh(k) cos(d — p))} (x> 0), (1)

where cosh(k) = {exp(r)+exp(—k)}/2, and tanh(k) = {exp(k) —exp(—k)}/
{exp(k) + exp(—k)}. Furthermore, a parameter space is given by a > 0,
6>0,k>0,—7 < p<mand —1 <\ < 1without complicated constraints.
In the distribution of Abe and Ley (2017), the marginal distribution of
© becomes the sine-skewed wrapped Cauchy distribution with A being a
skewness parameter. However, in practice, there exist data on cylinders
in cases where the circular part exhibits significant asymmetry near the
mode, and cannot be fully captured by the sine-skewed wrapped Cauchy
distribution.

2 Main reports

To cope with this problem, we introduce the density function proposed by
Miyata et al. (2024)

afB®
7 cosh(k)

x exp {—(fx)* (1 — tanh(k) cos(@ — p))} (x >0), (2)

where H = {(p, s, \,a, B)| -7 < p<mk>0,-1<A<1,aa>0, and 5 >
0} is a parameter space,

I'2(g+1
gq(x):M

P s (0:2) = Gy(Asin(0 — p))z®~!

(1-a%)?  (-1<az<l),
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is a Beta density function, I'(-) is the Gamma function, and Gy(z) =
x

/ gq(t)dt is its distribution function. We call the distribution (2) the
1

Weibull Extended Sine-Skewed von Mises (WeiESSvM) distribution. ¢ > 0
is a prespecified value, that is a hyperparameter, which we call “order”. As
seen from the contour plots in the upper right and lower right of Figure 1,
the skewness parameter A enhances the degree to which the distribution of
O is skewed as order ¢ is increased.

Order ¢ =2: A=0,0.5,0.9

Figure 1: Contour plots of the density (2) with « =2, =1, p =0, and
k = 1. The horizontal axis represents the variable x and the vertical axis
represents the variable 6.

In this talk, we reported the following theoretical advantages and limi-
tations.

e All the marginal and conditional distributions of © and those of X
can be expressed in a closed form.

e Since the marginal distribution of © is the extended sine-skewed wrapped
Cauchy distribution of order ¢, it can exhibit a greater degree of skew-
ness compared to the marginal distribution of © in the model (1).

e The algorithm that can easily generate random numbers from the pro-
posed model (2).
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e When order q is fixed, a subfamily of the proposed distributions .7-"(531) =
{ f\(,ggiESSVM(Q, x;n)|n € H} is identifiable for parameters. On the

other hand, the family Fey := {f\gggiESSVM(H,x;n)m € H,qe{0,1,2,---

is not identifiable.

The details of these characteristics are provided in Miyata et al. (2024) and
are omitted here. The marginal distribution of © in the density (2) can
represent various degrees of skewness by setting the appropriate order ¢.
To demonstrate this capability, we utilized a hidden Markov model with
this distribution as a component for wind direction and wind speed datal,
consisting of 7" = 426 measurements taken at Shionomisaki by the Disas-
ter Prevention Research Institute, Kyoto University. Using the maximum
log-likelihood method and the Akaike information criterion (AIC), we con-
firmed that the hidden Markov model with components for the proposed
distribution outperforms the model of Lagona et al. (2015). Here, the num-
ber of components for both models was estimated to be three using AICs.
In the model of Lagona et al. (2015), two of the maximum likelihood esti-
mates of skewness parameter A in each of the three components appeared
at the boundaries of the parameter space. In contrast, we reported that the
maximum likelihood estimates of skewness parameter A in the three compo-
nents of the proposed model, selected via the minimum AIC criterion, are
all interior points in the parameter space.
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Periodicity for circular data

Hiroaki Ogata
Tokyo Metropolitan University

1 Introduction

The purpose of this work is to detect the periodicity for circular time series
data. We define a spectral density for circular time series data regarding
the circular time series as a complex-valued process. We also calculate the
covariance matrix and spectral density for some specific circular time series
models.

2 Complex-valued processes

Consider a complex-valued zero-mean process x; = u;+iv, which is composed
from the two real random process u; and v, for t € Z. The covariance function
and complementary covariance function of x; are defined by

Tz [t7 h’] - E[wtx:—h]v fa:x [ta h] = E[xtmt—h]a

where x* stands for the complex conjugate of x. We also introduce the
notation x, = [x; x7]" and define the augmented covariance matrix

Tezlt, h]  Tuglt, h]

R.[th] = Ele ) = 7ot R it h] |

teZ heZ,

where ! is the Hermitian transpose of x. If R, [t, h] is independent of ¢,
the complex-valued process x; is called wide-sense stationary (WSS). When
xy is WSS, we can drop the t-argument from the covariance function, and
complementary covariance function have the following relations:

or equivalently,

R, [h] = Ry, [~1]. (1)

xa:[
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The Fourier transform of R, [h]:

2= [ 500 mCh | = e 2 Bt

is called the augmented power spectral density (PSD) matriz.

The augmented PSD matrix provides the spectral properties of z;. In ad-
dition, a complex second-order random process x; has the following spectral
representation:

Ty = /7r e E(N)

—Tr

where £()\) is a spectral process with orthogonal increments d&(\) whose
second-order moments are E|dé(N)|? = P,,(\)d\ and E[d{(N)dE(—N)] =
P,.(\)d\. This representation indicates the x, can be decomposed into pe-
riodic (rotary) components, and P,,()) is interpreted as the magnitude of
periodic component with frequency .

3 Examples

In this section, we clarifies the augmented covariance and PSD matrices in
two circular time series models. In this section, let {©;},cz be a stochastic
process, taking its values on the interval [—m, w]. We also express a circular
random variable by a unit circle on the complex plain: z, = €'©.

3.1 Circular mixture transition density model

Ogata and Shiohama [2023] considered the circular strictly stationary pth
order Markov process whose marginal distribution is set as a circular uniform
and transition density is defied by

P

FOO 1,002, ..) = F(Oulbr, .. 0y) =D arg(O — i) (2)
k=1

Here g(-) is any circular density functions, a; (k = 1,...,p — 1) > 0 and

a, > 0 are non negative and positive constants, respectively. The sum of

mixing weights must satisfy Y »_, a; = 1 and g;,’s are constants which take

the values —1 or 1. This model is referred as a circular mixture transition

density model. Denote the characteristic function of g by

G = pmetm = / ™ g(0)do (m=0,£1,£2,...).

—Tr
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Then, the augmented covariance matrix for h (> 0) is recursively obtained

by

p
k=1
where
¢ 0 14+q 1—q
[ ()
For h =0,

R,.[0] =

—IT

{ E[e—li%)t] E[ef@t] } s (5)

because we assume the marginal follows the circular uniform distribution.
Initial values are obtained by solving the equations

where R, [h] with negative h is replaced by R [—h].
The augmented power spectral density matrix of the circular mixture
transition density model is written by

-1
1 b . p p .
E:m:()‘) = % <]2 - Z \pkelkA> (]2 — Z \I/kB,I;x(k)> <]2 _ Z \I/II;Ie—lk)\>
k=1 k=1 k=1

where Uy, ..., ¥, are defined by (4) and R,,(1),...,R,,(p) are obtaind by
solving the equations (6).

-1

3.2 Wrapped Auto regressive process

Breckling [2012] introduced the wrapped autoregressive process
©; =Y; (mod 27),

where {Y; }1cz is a stationary linear AR(p) process

Y=Y oY +e (7)

k=1
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with &; independently and identically distributed as N(0,02). (7) can be
rewritten into MA(oo) form

V=) e
k=0

where
Z|¢k|<007 o =1, =0 for k <O.

In the case of wrapped AR(1) process
©; =Y, (mod 27), Yi=¢Y, 1+, @] <1,

the process Y; can be rewritten as

[e.e]

Y, = Z ¢k€t7k-

k=0

Then, the augmented covariance matrix becomes

_ 219" o140
e 7 1-¢2 o E—
sz(h) = 2 1ol 2 1-h - O (h — OO)

e 1—¢2 e 1—¢2

This implies that the covariance of wrapped autoregressive process does not
tend to be zero.
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