受賞者氏名 佐々木 秀徳 理工学部電気電子工学科 加利	
受賞年月日 2025 年 3 月 7 日	
国内・国外 国内	- A
授与機関等名称 一般社団法人法政大学理系コンソーシア	1
Δ	
受賞名 送政科学技術フォーラム 2025 報告・優秀 発表賞	
本研究は当時,本学大学院理工学研究科電気電子コ 修士1年生の長山泰輔氏(指導教員:佐々木秀徳専任講	·
政大学科学技術フォーラム 2025 にて「Swin Transforme	
たモータ特性推定および推定根拠の可視化手法に関す の題目で発表した内容である。	る検討」
電気自動車に用いられるモータの設計には有限要素	法などの
数値解析を用いることが多い。しかし、解析時間が支配	配的とな
り,設計時間が長くなる可能性が高い。そこで人工知能の	カー種で
ある深層学習モデルを用いた高速な特性予測モデルに関	関する検
討がなされている。	
長山氏と佐々木専任講師はこの予測に Swin Transfo	_
用いることを提案した。本モデルは注意機構と呼ばれる権	
いており、予測根拠の可視化も容易に行えるため、予測	訓結果の
根拠を可視化することも容易である。	
本成果は数値解析の国際的シンポジウムである IGTE	
て発表した。さらには、本結果を発展させ、国際ジャ	
"COMPEL: The International Journal for Computational Mathematics in Electrical and Electronic Engineering"	
Mathematics in Electrical and Electronic Engineering" んにて Accept された。	~ 技情し
受賞(研究)内容詳細 佐々木研究室ではトポロジー最適化や深層学習技術	たべー フ
に自動設計技術により、産業界の発展への貢献を目	
10日勤設可及例により、産来外の光版への負職を日	пр СС.
•••	