

法政大学 情報メディア教育研究センター HOSEI University シンポジウム

2015年3月9日

予習実施率100%を目指した授業実践

一授業デザイン編ー

藤田哲也 (法政大学文学部心理学科) fujita009@nifty.ne.jp

0.本報告の概要

- 0-1.法政大学文学部心理学科「演習II」の 授業目標と構成について
- →授業目標を達成する手段としての授業方法
- 0-2.アクティブ・ラーニングの一形態である 反転授業のデザインについて
- →授業外学習を実質化するための工夫
- ⇔システムに関する説明は、後編(芳賀先生)で
- 0-3.受講生からの授業外学習に対する評価
- →授業方法への有効性の認知とコスト感

1-1.カリキュラム上の位置づけ

- 2年次配当の専門科目(秋学期2単位)
- *実質的に必修扱い
- -5名の専任教員が担当
 - ⇒1クラス13名前後(再履修生は各1-2名)
 - ⇒共通シラバスで, 基本的な授業案も共有
- 内容は中級の心理学実験演習

1-2.授業目標(シラバスからの抜粋)

- a.実験計画を立てるのに必要となる,要因計画の 基礎知識を理解し説明できるようになること。
- b.任意の問題意識に基づいて, 2要因以上の実験計画を 立てられるようになること。
- c.実験を実際に行う際の具体的な方法(手続き)を 考案できること。
- d.得られたデータに対して適切な統計的手法を用いて 分析できること。
- e.実験の成果を正確かつ効率よく情報発信できること。

1-2.授業目標(シラバスからの抜粋)

- a.実験計画を立てるのに必要となる、要因計画の 基礎知識を理解し説明できるようになること。
- b.任意の問題意識に基づいて, 2要用い立てられるようになること。
- c.実験を実際に行う際の具体的な、 考案できること。
- d.得られたデータに対して適切な統計的手法を用いて 分析できること。
- e.実験の成果を正確かつ効率よく情報発信できること。

© Copyright Hosei University

この要素に

反転授業

1-3.授業計画(シラバスからの抜粋)

- 1 イントロダクション
- 2-4 要因計画の基礎
- 5-7 計画発表準備
- 8 計画発表
- 9 実験計画修正等
- 10 実験実施
- 11-13分析, 考察, 本発表準備
- 14 本発表
- 15 総括

1-3.授業計画(シラバスからの抜粋)

- 1 イントロダクション
- 2-4 要因計画の基礎
- 5-7 計画発表準備
- 8 計画発表
- 9 実験計画修正等
- 10 実験実施
- 11-13分析, 考察, 本発表準備
- 14 本発表
- 15 総括

主にここで反転授業


* ただし、この授業全体でアクティブ・ラーニング採用

2-1.「アクティブ・ラーニング」とは

一方的な知識伝達型講義を 聴くという(受動的)学習を乗 り越える意味での、 あらゆる能動的な学習のこと。 能動的な学習には、書く・ 話す・発表するなどの活動 への関与と、そこで生じる 認知プロセスの外化を伴う (溝上, 2014, p.7)。

2-2.演習!!におけるアクティブ・ラーニング

アクティブ・ラーニング

- =学生の学習の一形態
- ≠授業·コースデザイン全体を指す包括的概念
- × アクティブラーニング型授業をすること自体が 目的化⇔あくまでも教育目標達成の手段

- 2-2.演習!!におけるアクティブ・ラーニング
- Project Based Learning (プロジェクト型学習)
- 一自分たちで実験を計画・実施することが 学生にとっての主たる課題

- •基本的に班活動による授業
- ⇒全員が主体的・積極的に参加することが重要
- ⇒授業内の班活動を充実させるためには, 事前の準備学習が必要不可欠

2-3.反転授業

通常授業

教科書等で 予習

反転授業

教科書等で 予習

授業ビデオ で予習

授業時間内

授業で 解説

各種の アクティブ・ ラーニング

授業時間内

各種のアクティブ・ ラーニング

2-3.反転授業

予習の段階で理解不十分な箇所の相互教授 =「わかったつもり」からの脱却 協同学習の技法 「シンク=ペア=シェア」「ラウンド・ロビン」

及ぼす影響"の実験について考え

- ⇒予習課題で作成した回答に基づき,授業内で 班活動(話し合い=班での回答を作成)
- ⇒班での回答をクラスで共有し. フィードバック

- 予習教材3-1の詳細:ビデオ視聴後の課題

"騒音の大きさが作業の能率に及ぼす影響"の実験について 考えてみてください。騒音の大きさに関して、80dB条件、60dB条件、40dB条件を被験者間で設定したとします。つまり、参加者は、 三つの条件のいずれか一つにのみ参加します。各条件下で、 参加者に共通の作業として計算課題を行ってもらい、成績を比較 するものとします。

- →何が独立変数で,何が従属変数でしょうか?
- →この場合の「騒音の大きさが作業の能率に及ぼす影響」の実験 に影響を及ぼしうる剰余変数として何が考えられるでしょうか。 できるだけたくさん挙げてみましょう。

- 2-3.反転授業
- ビデオ教材:
- a.第2回~第5回の授業で使用
- b.一つの教材は長くて15分程度
- c.1回の授業で2~3個のビデオ教材+予習課題

•予習課題(授業プリントを兼ねる): 回答(pdfに設定した回答欄に記入)作成後, 授業支援システム経由で授業前に提出+印刷

1. 剰余変数の統制と統制群

- 1-1. 基本用語の確認:独立変数・従属変数と剰余変数の関係(予習教材3-1)
- ・独立変数…実験においては、実験者が操作する変数。要因、処理とも呼ばれる。

"原因→結果"という文脈では、原因の側、すなわち、

"結果(従属変数)に影響を及ぼすと思われる変数"のこと。

調査においては、調査者が操作するのではなく、従属変数の値の違いを説明するために 取り上げられる変数 (=**説明変数**と呼ばれることが多い)。

- ・従属変数…独立変数から影響を受けると考えられる変数。"原因→結果"の、結果の側。 実験においてデータを得るのは、この従属変数。
- *ある従属変数に影響を及ぼすと考えられる独立変数について、2つ以上の**条件**を設定し、それぞれの条件の下で測定したデータを比較する。 分析の際には、条件は「その要因内の**水準**」と呼ばれることもある。
- ・剰余変数…独立変数以外の変数のうち、従属変数に影響を及ぼす(可能性のある)変数。 心理学においては、自分が興味を持っている独立変数以外にも、必ず剰余変数の影響が 混在していると考えること。下手をすれば操作した(調査した)独立変数よりも強力な 剰余変数が関わっているかもしれない。
 - →得られたデータに条件間で差が見られても、それは独立変数の影響ではなく、剰余変数 との**交絡**の結果かもしれない。
 - →大きな影響を及ぼすと考えられる剰余変数があるのなら、積極的に独立変数として扱うか、統制 (control) すること。

•	剰余変数について,	予習教材に取り組み,	練習問題の回答を作成してきてください。
-			

・剰余変数について、予習教材に取り組み、練習問題の回答を作成してきてください。

回答欄にテキスト入力し、保存 + 授業支援システム経由で事前提出 + 印刷して授業にプリント持参

2-4.反転授業「後」

•第6回~第15回:

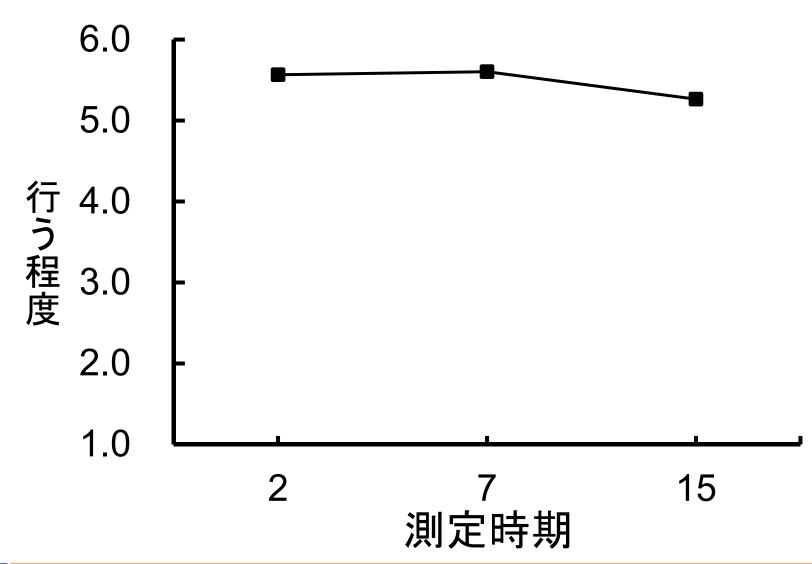
ビデオ教材なしで、事前に予習課題に取り組む

- →授業内での班活動に備える
- =基本的に最終回までこのスタイルを維持

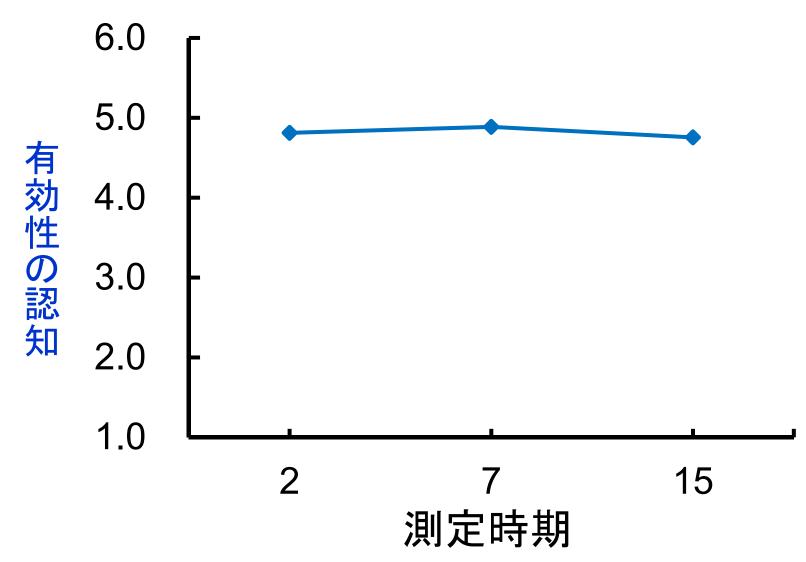
3-1.予習課題への取り組み

- ・全15回を通して、90%程度の事前提出率
 - ⇒第2回~第5回の反転授業部分では90%以上維持
 - ⇒第6回目以降は85%程度になることも
 - *詳細は、後編で報告
- 基本的に、出席者はほぼ予習をしてきていた

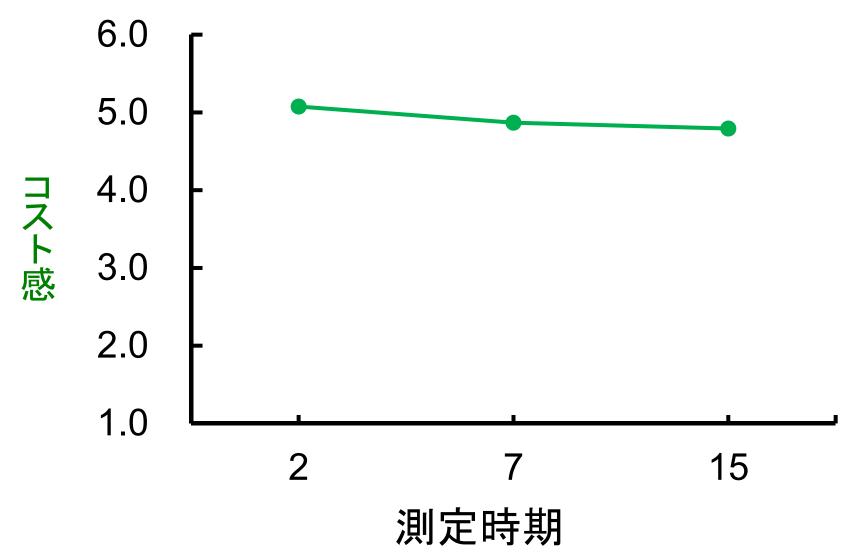
3-2.授業外学習に関するアンケート実施


- ・第2回,第7回,第15回の授業冒頭で, 授業外学習アンケート実施
- ⇒65名中, 3回とも回答した53名が以降の分析対象
- •「教科書の予習」「それまでの復習」「課題 (宿題)に取り組む」「班活動」「ビデオ教材視聴」
- ⇒行うつもりの(行った)程度, 効果的だと思う(有効性の認知), 行うのは面倒(コスト感)について, 6件法(6:非常によく当てはまる~1:まったく当てはまらない)で評定

- 3-2.授業外学習に関するアンケート実施
- 本報告では以下の3項目について報告 次の回の授業に備えて、指示されたビデオ教材 を視聴するということを、
 - a.演習IIで行うと思う(行った)
 - b.行うのは効果的であると思う(有効性の認知)
 - c.行うのは面倒であると思う(コスト感)



・ビデオ教材視聴を, 演習IIで行うと思う(行った)



・ビデオ教材視聴は、効果的だと思う(有効性)

・ビデオ教材視聴は、面倒だと思う(コスト感)

- 3-2.授業外学習に関するアンケート実施
- a.演習IIで行うと思う(行った)
- b.行うのは効果的であると思う(有効性の認知)
- c.行うのは面倒であると思う(コスト感)
- ⇒いずれも比較的高い評定 測定時期による変化は有意では無かった
- ⇔有効性の認知とコスト感の相関は、
 2回(r=.22)、7回(r=-.01)、15回(r=-.26)
 - =15回目のみ, 有意な弱い負の相関(p<.05)

4.まとめと今後の課題

- 4-1.授業運営上の反省点
- a.特定の欠席しがちな学生への対処
 - =班活動の前提を維持するために重要

- b.5つのクラス間での違いについての検証
 - =授業案レベルでは共通化しているが?

- c.予習のタイミングへの介入
 - 一直前の予習をいかに減らすか

4.まとめと今後の課題

4-2.授業の教育効果の検証

- a.学生の学習成果をどのように評価するか
 - −現状では、「平常点」「計画発表」「本発表」「ミニ論文」が成績評価の対象
 - ⇒発表・ミニ論文にはルーブリックを導入 ルーブリック自体の運用について検証
- b.授業内での活動性をどのように評価するか
 - =成果か, 過程か
 - ⇒ディープ・アクティブ・ラーニングのとらえ方

ひとまず終了: ご清聴ありがとうございます

ここまでのところで, ご質問やご意見など ございましたら, よろしくお願いします。

5.補足

5-1.ルーブリック

 課題や成果(レポート,発表も対象)に求める到達を, 複数の評価基準(=評価の観点)× 観点ごとの到達の程度(=段階) のマス目(マトリックス)状に表現したもの

5.補足

5-2.ルーブリックの例

・基礎ゼミでの発表における「発表の仕方:話し方」の例

観点の説明	5	4	3	
a.はっきりと聞き 取りやすい声の 大きさとスピード で話せる。 b.聞き手の理解 度や聞く意欲を 高めるためのエ 夫ができる。	a.教室の一番遠く 離れた聞き手にも大に間これを問います。 おいかで、早せるにより、早せることが、早まで、はいりではないででである。 はいができます。 はいかではいる。 はいる。 はいる。 はいる。 はいる。 はいる。 はいる。 はいる。	a,bのうちの一つが 以下のような状態で, もう一つは上記「5 点」の状態で話せる。 点」の状態で話せたり、 中になることがときどきある。 b.レジュメや準備した原稿の棒読みに感じることがときどきある。	a,bの両方が以下のような状態で活った。 はる。 おいさくない はん	

5.補足

5-3.ルーブリックの利点

- 課題や成果(レポート,発表も対象)に求める到達を, 複数の評価基準(=評価の観点)× 観点ごとの到達の程度(=段階) のマス目(マトリックス)状に表現したもの
- ・主観や印象に依らない評価が可能
- •事前に学生に評価基準を明示できる
- •複数教員が関わる授業での評価を統一
- 授業の到達目標を教員が強く意識できる
- ⇒授業方法との整合性の検討がしやすい