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From June 2024 to March 2025, the proposed research plan targeting the enhancement
of fault tolerance, robust aggregation, and parameter privacy in Federated Learning (FL)
systems has been effectively implemented. The plan was executed across three core
aspects—theoretical research, experimental design, and data analysis—and yielded
substantial results that ahgn Well Wlth the orlglnal ob]ectlves
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ﬁE Task 1: Advanced Knowledge Distillation-based Robust Aggregation. Local Models
i Fig 1 Combining knowledge distillation with meta-learning to defend FL
1. Theoretical Research Achievements
2 | 1.1 Knowledge Distillation and Meta-Learning Integration:

As shown in Fig. 1, this study developed novel strategies combining knowledge distillation
with meta-learning to defend FL models against poisoning attacks. In the publication
“Blockchain-Empowered Resilient Attack Defense in Federated Learning for Consumer
Electronics” (IEEE CEM), a robust decentralized trust mechanism was proposed. It
integrates teacher-student distillation under adversarial settings, enabling the system to
maintain over 80% accuracy even with 50% of clients being malicious.
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1.2 Blockchain and Tree-Based Decentralized Trust:

The above work also introduced a TreeChainFL
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Federated Learning systems were Ris 3 TFederated Reinforcement Learning

simulated on real'worl.d tasks: In t.he with  Privacy-Preserving for  Vehicle
consumer electronics domain,  production Planning

Byzantine attack scenarios were
simulated using standard image classification datasets to evaluate defensive strategies.

In the transportation manufacturing domain, a novel federated reinforcement learning
system was developed to optimize vehicle production planning. Two modules—DOPM
(GRU-based) and HQPM (Transformer-based, as shown in Fig. 2)—were built to
dynamically and efficiently schedule 1000 vehicles in less than 5 seconds, with over 95%
fewer constraint violations compared to traditional methods.

The FL environments employed public datasets (e.g., CIFAR-10, CIFAR-100) and real-
world vehicle production planning dataset, aligning with the initial plan. These were
tested under both non-IID and Byzantine attack settings.

3. Comparative Data Analysis and Evaluation

The effectiveness of the proposed methods was quantitatively evaluated against multiple
baselines: In the attack defense study, proposed methods outperformed FedAvg and Krum
under poisoning conditions. In the scheduling task, HQPM under FL achieved 93.18%
improvement in constraint satisfaction and 95.11% speed enhancement compared to
NSGA-II. Evaluation metrics included accuracy, recall, reward values, and violation
scores, thoroughly supporting the claims of robustness, scalability, and privacy-
preservation.
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