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Estimating Finite Mixtures of Disc Distribution
and Its Applications to Image Recognition
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Abstract

Analyzing data on HSV color space can provide useful information for image segmentation and
classification. These data take values on a special manifold such that the pairs of the hue and saturation
variables are located on the unit disc, and the trivariate variables including the value have data on the
inside of the cylinder. Implementing these special geometric manifolds into statistical data analysis
needs special attention. In this study, we consider the mixtures of the disc distribution and provide
some methodologies for estimating model parameters. These estimation techniques are applied for image
recognitions using cifer10 datasets.

1 Introduction

Several machine learning techniques on image processing have widely evolved in the last two decades. Var-
ious algorithms are applied to image recognition, including object recognition and face recognition, image
search, and image manipulation. The most successful algorithm is deep learning or the Convolutional Neu-
ral Networks (CNNs) as it provides a method that can extract image features and applies these features on
automated unsupervised classification. AlexNet (Krizhevsky et al., 2012) and ResNet (He et al., 2016) are
some of the popular CNNs, that have improved performances of image recognition by increasing network
depths.

In general, image processing is mainly investigated on the RGB color space which represents images as a
three-dimensional Cartesian coordinate system. Each of the pixels has value on the three-dimensional cube.
It is often reported that the disadvantages of the RGB color space are the redundancy in color representation.
Some approaches on reducing redundancy in color image date are found in, for example, Bhurchandi et al.
(2000) and Marguier (2010). In this study, we investigate image classification based on HSV color space
instead of using RGB color space. Data on HSV color space are consists of special manifolds known as a
cylinder or a disc. Statistical analysis on these manifolds needs to pay special attention. Applications on
the image segmentation based on the HSV color space can be found in Cantrell et al. (2010), Ganesan et al.
(2014), and the references therein.

There are few distributions defined on the unit disc and its extension for higher-dimensional space. The
first distribution on the unit disc is proposed byJones (2004) and its extension is investigated by Wang and
Shimizu (2012). On the other hand, the copula type distribution proposed by Wehrly and Johnson (1980) can
be applied for fitting data on the unit disc. Applying these existing distributions for fitting HSV color data
in image processing does not provide satisfactory fitting performance, since these distributions do not have



peaks on the origin. It is often the case that the image data contains white pixels located at the origin of the
unit dice. To overcome this shortcoming, we consider practical distribution and its mixtures for analyzing
image data on HSV color space.

The rest of this paper is organized as follows. Section 2 introduces the distributions on the unit disc. In
Section 3, we introduce a finite mixture of disc distributions and discuss the parameter estimation procedures
for it. Section 4 illustrates the image data analysis using Cifer10 datasets. Finally, in Section 5, we conclude
the paper with discussions and further research topics.
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Time Series Quantile Regressions by using Random Forest
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Ryotaro Shibuki* , Tomoshige Nakamura , Hiroshi Shiraishi*

In this paper, we discuss an estimation procedure of conditional quantile by using random forests in time
series setting. Our study is an extension of the quantile random forest (QRF) by Meinshausen (2006), the
generarized random forest (GRF) by Athey et. al (2019) and random forest in time series setting by Davis and
Nielsen (2020).

Model Let (g;)¢>1be a sequence of i.i.d. random variables with E[g;] = 0 and E[e}] < oo, and fix an integer

p > 1. Given a measurable function g : R”? — R, define the process (Y;);>1 recursively by
Y, =9(Xe) +er, Xi=(Yic1,oo,Yip). €9)

In addition to the initial data n = (Yy,Y_1,---,Y1_p), suppose that we have T" observations Y7,..., Y7 from
the model (1) available and that we group them in input-output pairs, Dy = {(X1,Y1),..., (X7, Yr)}. For
each fixed value 7 € (0,1), we seek forest-based (function) estimator of ¢7 : R? — R defined by a solution of

local estimating equation of the form
U7 (ql, z) = E[yg, (V)| X, =] =0, forallzeRf (2)

where 97 (y) = 7 — 1{y<q)- Let ¢f = (¢](x))zerr be the solution of (2) under the model (1). We assume that
there exists g7 (z) for all x € R? and 7 € (0,1).

Double sample We next define our random forests following Athey et. al (2019). Our random forests consists

of the double sample trees, which are regression trees based on two subsamples Z; and 7, from sample Dr.

Definition 1. (Double Sample) Suppose that sample Dr is available and the sub-sample size s = s(T') with
s < T is provided. Let

A, = {A:{AI,AJ}, AT AT C{1,2,..., T} AT A7 =0, |AT| = EJ |47 = E]}
For any A = {AT, A7} € A,, we define two sub-samples T, and Js by T, = Dyz,Js = Das where Dy =

{(Xe, Y hrea

Splitting rule We next define splitting rule in order to construct the double-sample regression trees following
Wager and Athey (2018).

Definition 2. (Splitting rule) Given subsample Js in Definition 1, we define a sequence of partitions Py, P1, . . .
by starting form Py = {RP} and then, for each £ > 1, construct Py from Pe_1 by replacing one set (parent node)
P € Py_1 by (child node) C1 :={x = (z1,...,2p) € PCRP : 2¢ < (} and Cy :={x = (z1,...,2,) € PCRP:
xe > (}, where the split direction § € {1,...,p} is randomly chosen (i.e., random split) .

*Graduate School of Science and Technology, Keio University
TFaculty of Science and Technology, Keio University
fFaculty of Science and Technology, Keio University



Double-sample regression trees A given partition A of R? is called “recursive” if A = Py for some ¢ > 0,
where Py, ..., Py are obtained as above. Note that the splitting rules determining how to choose node, direction
and position of a split may depend on the data Dr, the double sampling procedure A € A, and the sequence

i.4.d

of independent random splittings & = {&; }i=1,. ¢ with § "~ E. By using the recursive partition A, we define

.....

our double-sample regression trees.

Definition 3. Given a recursive partition A(A,§,Dr) = {L1,..., L} and a fived x € RY g€ R,7 € (0,1),
our double-sample regression tree T (q,x; A, &, Dr) is defined by

1 ) .
T(q.2:A,6Dr)= Y Ww (V3)
te AT A

where Ly(x) = {X, : X; € L(x)} N ZX, ZX = {X,}1ez, and L(x) € A(A, €, D) is a leaf containing  (i.e.,
xeLax))

Random Forests According to Wager and Athey (2018), the predictor 7 defined by Definition 3 is called
“k- PNN predictor” if the assumption (A-3) is satisfied. Then, we define our random forests following Athey
et. al (2019).

Definition 4. For a fized z € R? g € R,7 € (0,1), our forest score is defined by

T
|“4 et =
where oy (x) = ﬁ Doaea, @ar(®) and apy(x) = W

Quantile estimator By using the above random forest, we can define an estimator of the conditional quantile

as follows.

Definition 5. For each 7 € (0,1) and given Xy = x, we define an estimator of ¢7(x) by

Zat ¢7Yt }
2

Theorem 1. Under some regularity conditions and subsample size s(T) satisfies s(T)/T — 0 and s(T) — oo

gp(z )Eargmm{

as T — co. For each 7 € (0,1) and x € RP, any sequence of estimators ¢-(x) converges in probability to 7 (x),
that 1is,

G7(x) LN qi(x) as T — oc.
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The self-weighted LAD estimator for unit root

process with locally stationary innovations

Junichi Hirukawa'

1Niigatu University

1 Introduction

In most cases, the limiting distributions of the integrated time series are given by cer-
tain functionals of Brownian motion. The main stream of this research area is based
on the least squares estimators and those resutls on unit root estimator can be found
in Phillips (1987a, 1987b), Perron (1988), Phillips and Durlauf (1986), and references
therein. Phillips (1990) and Chan and Tran (1989) extended it for infinite variance in-
novation cases, in which the limiting distributions are given by the functionals of Lévy
processes. The least absolute deviations (LAD) estimation of the autoregressive param-
eter in unit root processes with infinite variance innovations are considered in Knight
(1989, 1991) and Davis, Knight and Liu (1992). The limiting distribution of the LAD
estimators are functionals of a bivariate Brownian motion or combination of Brown-
ian motion and Lévy process. Herce (1996) derived the limiting distribution of LAD
estimator of the unit root process when the innovation process is given by the gen-
eral linear (MA (c0)) processes. To undertake statistical inference for infinite variance
autoregressive models, Ling (2005) proposed a self-weighted least absolute deviation
estimator and showed that this estimator is asymptotically normal. Although the unit
root inferences under stationary assumption on the innovation processes are well es-
tablished, empirical studies show that the innovation processes are not constant in
time. One of the most important classes of nonstationary processes has been formu-
lated in a rigorous asymptotic framework by Dahlhaus (1996a,b, 1997 and 2000), called
locally stationary processes. Locally stationary processes have time-varying spectral
densities whose spectral structures smoothly change in time. In this talk, we derive
the asymptotic distribution of the self weighted LAD estimator of the first-order au-

10



toregressive parameter under the unit root hypothesis with locally stationary and a-
stable innovation processes.
The original random walk process of i.i.d. innovations is given by

Ty =Tt + Et, To = 07 (1)

where {¢,} is a sequence of independent, identically distributed random variables. We
consider two different cases. That is, (i) {¢;} is mean zero and has the finite variance
Var (g,) = 0 < co. In this case, we set ap = V/T. (ii) {¢;} belongs to the a-stable
domain of attraction D («), 0 < a < 2. We also assume that F (¢;) = 0for 1 < a < 2,
¢, is symmetric for a = 1 and the normalizing constant is given by ar. For the random

walk process (1), we construct the partial sum process

Dy (s) := L Zst. 2)

Then, this partial sum process satisfies the FCLT
Dr(s) = D(s) = oW1 (s) (3)
for the finite variance case and the stable law
Dr(s) = D (s) = Sa(s) (4)

for a-stable case with 0 < a < 2, where = denotes the convergence in distribution
in D (0,1) with J;-topology, W, (+) is the standard Brownian motion and S,, () is the

stable process with index a.

2 The self-weighted LAD estimator for unit root process

with locally stationary innovations
Now, we consider the univariate time series y, r, generated according to

Y,r = Botr—i,r +uer, Lfo=1,t=1,2,...,

where we assume that yor := yo = 0 to simplify the notation, and {u;r} is a time
varying MA (oco) process.
We adopt the self-weighted least absolute deviations estimator (SWLADE) defined

as

Bswrap = arg %161]11‘3 {Lr (B)}

11



with

T
1
Ly (ﬁ) = aT\/T tz:;wt—l,T |yt,T - ﬁyt—1,T| )

where w;_; r is a given real and positive function of y;,_; 7.

Then, we can show that the following result.

Theorem 1. It holds that, as T — oo,

A

arV'T (5SWLAD - 1) = BV
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