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Editor’s introduction on the special issue “A theory of
coalition-proofness and its applications”

Ryusuke Shinohara

I am very glad to introduce the special issue in Journal of International Economic Studies, titled “A theory
of coalition-proofness and its applications.” The special issue provides the analysis of coalitional behavior in
the non-cooperative game theory and its application to public good provision. This issue includes three papers,
all of which are the outcomes of the research project “Public economics and political factors: The evaluation
of economic policies and the design of economic systems,” conducted at the Institute of Comparative Economic
Studies, Hosei University from April 2015 to March 2017.

In the second paper “Coalition-proof Nash equilibria and weakly dominated strategies in aggregative games
with strategic substitutes: A note,” I examine the relation between coalition-proof Nash equilibria (Bernheim et
al., 1987) and weakly dominated strategies in games with strategic substitutes (SS) and monotone externalities
(ME). I show that in a game with SS and ME, which is introduced by Quartieri and Shinohara (2015) and has
a lot of economic games as examples, every coalition-proof Nash equilibrium is a Nash equilibrium in which
all players take undominated strategies. I also obtain as a by-product of the main result that the set of Nash
equilibria coincides with the set of undominated Nash equilibria in the game. From the results, I conclude that
the relation between the coalition-proof Nash equilibrium and weakly dominated strategies in games with SS is
completely different from that in games with strategic complements.

In the third paper “Coalitional equilibria in non-cooperative games with strategic substitutes: self-enforcing
coalition deviations and irreversibility,” I provide a game-theoretic framework which could be applied to many
economic phenomena such as cartel formation and public good provision. Introducing a new equilibrium concept
of a coalitional equilibrium with restricted deviations, I examine how effectively equilibria based on coalitional
stability refine Nash equilibria in games with strategic substitutes and monotone externalities. From the existing
equilibria such as coalition-proof Nash equilibria and near-strong Nash equilibria, I can consider several ways
of restriction of coalitional deviations. I incorporate two reasonable self-enforcing conditions of coalition de-
viations, Nash stability and irreversibility, into the coalitional equilibrium and provide a more general analysis
than the earlier researches.

In the fourth paper “Undertaking nonharmful or harmful public projects through unit-by-unit contribution:
coordination and Pareto efficiency,” I examine the implementation of a public project that is nonharmful for all
agents as well as a public project that is harmful for some agents through a unit-by-unit contribution mecha-
nism. For a project that is nonharmful for all agents, efficient implementation is supported at one regular Nash
equilibrium and several refined Nash equilibria that are stable against coalition deviations. In this sense, this
mechanism works well. On the other hand, when the project is harmful for some agents, this mechanism may
not have a Nash equilibrium with efficient implementation of the project. Even when such a Nash equilibrium
exists, it may not be selected by any of the refined Nash equilibria. Thus, in this case, this mechanism does not
work. Our result shows that the merit of the unit-by-unit contribution mechanism reported in the literature is
partially extensible to the implementation of a public project.

Finally, I would like to thank everyone who is related to my project. My special thanks are due to Wataru
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 (Editor’s Introduction)

Kobayashi, Tomomi Miyazaki, Taro Ohno, Kazuki Hiraga, Haruo Kondo, and Yasuhiro Arai, who all are the
project members, for constant supports and valuable comments. I hope that the research outcomes build basis
for future works.
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Coalition-proof Nash equilibria and weakly dominated
strategies in aggregative games with strategic substitutes:

A note

Ryusuke Shinohara∗

Abstract

We examine the relation between coalition-proof Nash equilibrium (Bernheim et al., 1987) and weakly
dominated strategies in games with strategic substitutes (SS) and monotone externalities (ME). We show that
in 𝜎𝜎𝜎𝜎-interactive games with SS and ME, every coalition-proof Nash equilibrium is a Nash equilibrium with
undominated strategies. We also find as a by-product that the set of Nash equilibria coincides with the set
of undominated Nash equilibria in those games. The relation between the coalition-proof Nash equilibrium
and weakly dominated strategies in games with SS is completely different from that in games with strategic
complements.

Keywords: Coalition-proof Nash equilibirum; Undominated strategies; Aggregative games; Strategic substi-
tutes.

JEL classification: C72; D62

1 Introduction

A coalition-proof Nash equilibrium, introduced by Bernheim et al. (1987), has been widely applied to many eco-
nomic games such as oligopoly markets, public good provision, and political competition, voting, and so forth.1

Hence, clarifying properties of the equilibrium will benefit the economic analysis. In this study, we examine
the relation between undominated strategies and coalition-proof Nash equilibria in a game with strategic sub-
stitutes. Table 1 provides a simple example in which the coalition-proof Nash equilibrium consists of dominated
strategies.

Example 1 Consider the two-player game in Table 1. In the example, (𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎) is coalition-proof, but 𝑎𝑎𝑎𝑎 (𝑎𝑎𝑎𝑎) is weakly
dominated by 𝑏𝑏𝑏𝑏 (𝑑𝑑𝑑𝑑 , respectively).

Shinohara (2019) points out that even under conditions of monotone externalities and strategic complements,
which are familiar in the analysis of economics, the coalition-proof Nash equilibrium may be dominated (see
Example 1 of Shinohara (2019)). Dekel and Fudenberg (1990) examine the robustness of solutions to payoff per-
turbations and suggest that refined equilibria should preferably be an undominated Nash equilibrium. From the

∗Department of Economics, Hosei University, 4342 Aihara-machi, Machida, Tokyo, 194-0298, Japan. Tel: (81)-42-783-2534. Fax: (81)-42-
783-2611. E-mail: ryusukes@hosei.ac.jp

1See Thoron (1998), Chowdhury and Sengupta (2004), and Delgado and Moreno (2004) for the application to oligopoly markets, Laussel
and Le Breton (1998) and Shinohara (2010a) for the application to public good provision, Messener and Polborn (2007) and Quartieri and
Shinohara (2016) for the application to voting and political competition.

1



4

Coalition-proof Nash equilibria and weakly dominated strategies in aggregative games with strategic substitutes: A note

Table 1: A coalition-proof Nash equilibrium consists of weakly dominated strategies

�����1
2

𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑

𝑎𝑎𝑎𝑎 3, 3 1, 3
𝑏𝑏𝑏𝑏 3, 1 2, 2

viewpoint of Dekel and Fudenberg (1990), Shinohara (2019) provides a new equilibrium concept called the un-
dominated coalition-proof Nash equilibrium, which incorporates the undominated-strategy property in coalition-
proofness. He shows the existence and the uniqueness of the equilibrium in a game with conditions of strategic
complements and monotone externalities.

The focus of this study is on the relation between undominated strategies and coalition-proof Nash equilibria
in a game with strategic substitutes. We consider this relation on the class of 𝜎𝜎𝜎𝜎-interactive games with strategic
substitutes and monotone externalities. This class of games is introduced by Quartieri and Shinohara (2015)
and it includes games that are frequently studied in economic analysis (see Quartieri and Shinohara, 2015).
Quartieri and Shinohara (2015) show the equivalence between the coalition-proof Nash equilibrium and the
Nash equilibrium in this class of games. However, whether the coalition-proof Nash equilibrium consists of
undominated strategies has not been studied.

We show that in every 𝜎𝜎𝜎𝜎-interactive game with strategic substitutes and monotone externalities, every
coalition-proof Nash equilibrium consists of undomiated strategies. This is shown in an interesting way me-
diated with the undominated coalition-proof Nash equilibrium of Shinohara (2019). First, we show that in the
game, the set of Nash equilibria and that of undominated coalition-proof Nash equilibria coincide (Lemma 1).
Second, by using the first result, we show that the set of coalition-proof Nash equilibria coincides with the set
of undominated Nash equilibria (Proposition 1). As a by-product of the first and second results, we find that the
sets of the Nash equilibrium, the undominated Nash equilibrium, the coalition-proof Nash equilibrium, and the
undominated coalition-proof Nash equilibrium all coincide in this game (Corollary 1).

The relation between the coalition-proof Nash equilibrium and undominated strategies have been studies by
several researchers. Moreno and Wooders (1996) and Milgrom and Roberts (1996) investigate the relation of the
equilibriumwith the iterative elimination of strictly dominated strategies and show that if there exists a profile of
serially undominated strategies that Pareto-dominates the other serially undominated strategies, it is a coalition-
proof Nash equilibrium. In contrast, the working paper by Shinohara (2010b) examines the relation between the
coalition-proof Nash equilibrium and the iterative elimination ofweakly dominated strategies. Shinohara (2010b)
clarifies that when the iterative elimination of weakly dominated strategies is adopted, a Pareto-superior serially
undominated Nash equilibrium is not necessarily coalition-proof. His contribution is to establish a sufficient con-
dition under which the coalition-proof Nash equilibrium survives the iterative elimination of weakly dominated
strategies. By applying his result, we find that if a game satisfies strategic substitutes and monotone externalities
and further the set of strategies is finite for every player, then the coalition-proof Nash equilibrium consists of
undominated strategies. The result of the present study generalizes his result because the games considered
in the present study satisfies more general conditions of strategic substitutes and monotone externalities and,
more importantly, we do not assume that the strategy set is finite. Peleg (1998) examines the relation between
the equilibrium and dominant strategies. Pointing out that the coalition-proof Nash equilibrium may consist
of weakly dominated strategies, he shows that almost all dominant-strategy equilibria are coalition-proof; thus,
such equilibria consist of undominated strategies. In our class of games, a dominant-strategy equilibrium does
not necessarily exist.

The remainder of this paper is organized as follows. Section 2 presents the preliminaries. Section 3 provides
the results and Section 4 concludes the paper.
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2 The model

2.1 Strategic substitutes and monotone externalities in 𝝈𝝈𝝈𝝈-interactive games

A strategic-form game is a list Γ = (𝑁𝑁𝑁𝑁𝑁𝑁 (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ), in which 𝑁𝑁𝑁𝑁 is a finite and nonempty set of players and,
for each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 , 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ≠ ∅ is the set of strategies of player 𝑖𝑖𝑖𝑖 and 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 :

∏
𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 → R is player 𝑖𝑖𝑖𝑖’s payoff function.2 A

subset of 𝑁𝑁𝑁𝑁 is called a coalition. For each coalition 𝐶𝐶𝐶𝐶 ⊆ 𝑁𝑁𝑁𝑁 , the set of strategy profiles for coalition 𝐶𝐶𝐶𝐶 is denoted
by 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 ≡ ∏

𝑖𝑖𝑖𝑖∈𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 . A typical element of 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 is denoted by 𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶 . Using this notation, we can express 𝑠𝑠𝑠𝑠 =
(
𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶 𝑁𝑁 𝑠𝑠𝑠𝑠𝑁𝑁𝑁𝑁 \𝐶𝐶𝐶𝐶

)

for each 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 . If a coalition is a singleton (that is, 𝐶𝐶𝐶𝐶 = {𝑖𝑖𝑖𝑖} for some 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 ), then we simply denote its strategy
profile by 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 and its set of strategy profiles 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 . Hereafter, the complement of coalition {𝑖𝑖𝑖𝑖} is denoted by −𝑖𝑖𝑖𝑖 , not
𝑁𝑁𝑁𝑁 \{𝑖𝑖𝑖𝑖}, for simplicity.

Let 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 : 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 → 2𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 denote the best response correspondence of player 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 : For each 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 ,

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) ≡ argmax
𝑧𝑧𝑧𝑧∈𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑧𝑧𝑧𝑧𝑁𝑁 𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 ) .

We do not restrict the player’s best response strategies to being unique.
We focus on a 𝜎𝜎𝜎𝜎-interactive game, which is defined as follows:

Definition 1 A game Γ = (𝑁𝑁𝑁𝑁𝑁𝑁 (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ) is a 𝜎𝜎𝜎𝜎-interactive game if

1. 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ⊆ R for each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 and

2. For each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 , there exists a function 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 : 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 → R such that 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 is non-decreasing in 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 ( 𝑗𝑗𝑗𝑗 ≠ 𝑖𝑖𝑖𝑖) and constant
in 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ; for all 𝑠𝑠𝑠𝑠𝑁𝑁 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 , if 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 and 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) = 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠), then 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) = 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠).

In this game, players’ strategies are real numbers. For each player 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 , 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 “aggregates” strategies of the players
other than 𝑖𝑖𝑖𝑖 . The aggregated value of the strategies through 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 , not their composition, affects player 𝑖𝑖𝑖𝑖’s payoff.
One of the examples of function 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 is 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) =

∑
𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 . Under this function, player 𝑖𝑖𝑖𝑖’s payoff depends on its own

strategy 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 and the sum of the others’ strategies, as in the standard Cournot oligopoly game and the public good
game.

We consider a 𝜎𝜎𝜎𝜎-interactive game in which every player’s best response correspondence is “non-increasing”
and players’ payoff functions are monotonic.

Definition 2 A 𝜎𝜎𝜎𝜎-interactive game Γ = (𝑁𝑁𝑁𝑁𝑁𝑁 (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ) satisfies 𝜎𝜎𝜎𝜎-interactive strategic substitutes (𝜎𝜎𝜎𝜎-SS) if
for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 , all 𝑠𝑠𝑠𝑠𝑁𝑁 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 , all 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 ∈ 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠), and all𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 ∈ 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠),

if 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) < 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠)𝑁𝑁 then 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 ≥ 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 .

Definition 3

• A 𝜎𝜎𝜎𝜎-interactive game Γ = [𝑁𝑁𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ] satisfies 𝜎𝜎𝜎𝜎-increasing externalities (𝜎𝜎𝜎𝜎-IE) if for all 𝑠𝑠𝑠𝑠𝑁𝑁 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 and
all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 , if 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 and 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) ≤ 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠), then𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) ≤ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠). A 𝜎𝜎𝜎𝜎-interactive game Γ = [𝑁𝑁𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ] satisfies
𝜎𝜎𝜎𝜎-decreasing externalities (𝜎𝜎𝜎𝜎-DE) if [𝑁𝑁𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 𝑁𝑁 (−𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ] is a game with 𝜎𝜎𝜎𝜎-IE.

• A 𝜎𝜎𝜎𝜎-interactive game Γ = [𝑁𝑁𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ] satisfies 𝜎𝜎𝜎𝜎-monotone externalities (𝜎𝜎𝜎𝜎-ME) if Γ satisfies 𝜎𝜎𝜎𝜎-IE or
𝜎𝜎𝜎𝜎-DE.

The conditions of strategic substitutes and monotone externalities are defined in terms of the aggregated
value by 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 . 𝜎𝜎𝜎𝜎-SS requires that the best response strategies for player 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 are non-increasing with regard to
aggregated values by function 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 . 𝜎𝜎𝜎𝜎-ME requires that the payoff function of player 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 is monotonic with
regard to aggregated values by function 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 .

2The model in this study is based on that in Quartieri and Shinohara (2015).
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Coalition-proof Nash equilibria and weakly dominated strategies in aggregative games with strategic substitutes: A note

Our focus is limited to pure-strategies. Quartieri and Shinohara (2015) present several examples of games
of economic interest that satisfy 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME. They show examples that have multiple pure-strategy Nash
equilibria. Hence, the class of our games also possibly includes games with multiple equilibria.

2.2 Equilibrium concepts

The Nash equilibrium is defined as usual.

Definition 4 Let Γ = (𝑁𝑁𝑁𝑁𝑁𝑁 (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ) be a game. A strategy profile 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 is a Nash equilibrium (NE) for
Γ if 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ∈ 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 . The set of Nash equilibria for Γ is denoted by 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (Γ).

In Definition 5, we introduce the notions of undominated strategies and Nash equilibria.

Definition 5

• In Γ = (𝑁𝑁𝑁𝑁𝑁𝑁 (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ), 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 is weakly dominated by 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 if 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 𝑁𝑁 𝑧𝑧𝑧𝑧−𝑖𝑖𝑖𝑖 ) ≥ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 𝑁𝑁 𝑧𝑧𝑧𝑧−𝑖𝑖𝑖𝑖 ) for all 𝑧𝑧𝑧𝑧−𝑖𝑖𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆−𝑖𝑖𝑖𝑖

and 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 𝑁𝑁 𝑧𝑧𝑧𝑧−𝑖𝑖𝑖𝑖 ) > 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 𝑁𝑁 𝑧𝑧𝑧𝑧−𝑖𝑖𝑖𝑖 ) for some 𝑧𝑧𝑧𝑧−𝑖𝑖𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆−𝑖𝑖𝑖𝑖 . Strategy 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 is undominated in Γ if no player 𝑖𝑖𝑖𝑖’s strategy
weakly dominates 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 . Let 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 be the set of player 𝑖𝑖𝑖𝑖’s undominated strategies in Γ.

• A strategy profile 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 is a undominated Nash equilibrium (UNE) for Γ if 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 is undominated for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁

and 𝑠𝑠𝑠𝑠 is a Nash equilibrium for Γ. The set of undominated Nash equilibria for Γ is denoted by𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (Γ).

For preparation to introduce coalition-proof Nash equilibria, we introduce a notion of induced games.

Definition 6 Let Γ = (𝑁𝑁𝑁𝑁𝑁𝑁 (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ). For all𝐶𝐶𝐶𝐶 ⊆ 𝑁𝑁𝑁𝑁 and all 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 , the game Γ |𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 = (𝐶𝐶𝐶𝐶𝑁𝑁 (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝐶𝐶𝐶𝐶 𝑁𝑁 (�̃�𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝐶𝐶𝐶𝐶 )
is the game induced by 𝐶𝐶𝐶𝐶 at 𝑠𝑠𝑠𝑠 in which �̃�𝑢𝑢𝑢𝑖𝑖𝑖𝑖 : 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 → R is the payoff function of player 𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶 such that �̃�𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 ) ≡
𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 𝑁𝑁 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ) for all 𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 ∈ 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 .

A coalition-proof Nash equilibrium, introduced in Bernheim et al. (1987), is as follows. This is recursively
defined with regard to the number of players in coalitions by using the induced games.

Definition 7 Let Γ = (𝑁𝑁𝑁𝑁𝑁𝑁 (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ) be a game. If |𝑁𝑁𝑁𝑁 | = 1, then 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 is a coalition-proof Nash
equilibrium (CP-NE) for Γ if and only if 𝑠𝑠𝑠𝑠 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (Γ). As the induction hypothesis, we assume that |𝑁𝑁𝑁𝑁 | ≥ 2 and
that a CP-NE has been defined for games with fewer than |𝑁𝑁𝑁𝑁 | players. Then,

• 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 is a self-enforcing strategy for Γ if it is a CP-NE for Γ |𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 for all nonempty 𝐶𝐶𝐶𝐶 ⊊ 𝑁𝑁𝑁𝑁 ;

• 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 is a CP-NE for Γ if it is self-enforcing for Γ and there does not exist another self-enforcing strategy
𝑡𝑡𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 for Γ that strongly Pareto dominates 𝑠𝑠𝑠𝑠 in Γ: 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) < 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡) for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 .

The set of coalition-proof Nash equilibria in Γ is denoted by 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (Γ).

We now introduce an undominated coalition-proof NE (UCP-NE) by incorporating the condition that players
take undominated strategies into the original definition of CP-NE (Bernheim et al., 1987). The equilibrium is
introduced by Shinohara (2019).

Definition 8 An undominated coalition-proof Nash equilibrium (UCP-NE) for Γ is defined by induction with
respect to the number of members in a coalition. First, define a UCP-NE for single-player coalitions.

1. Let 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 and 𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆−𝑖𝑖𝑖𝑖 . Strategy 𝑠𝑠𝑠𝑠∗𝑖𝑖𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 is a UCP-NE for Γ |𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 if 𝑠𝑠𝑠𝑠∗𝑖𝑖𝑖𝑖 ∈ argmax𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 ∈𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 𝑁𝑁 𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 ) and 𝑠𝑠𝑠𝑠∗𝑖𝑖𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 .

Next, define a UCP-NE for a coalition with more than one player.
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2. Let 𝐶𝐶𝐶𝐶 be such that |𝐶𝐶𝐶𝐶 | ≥ 2, and let 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ∈ 𝑆𝑆𝑆𝑆−𝐶𝐶𝐶𝐶 . As an induction hypothesis, a UCP-NE is defined in the
restricted games in which 𝐷𝐷𝐷𝐷 is the set of players for all 𝐷𝐷𝐷𝐷 ⊊ 𝐶𝐶𝐶𝐶 .

(a) 𝑠𝑠𝑠𝑠∗𝐶𝐶𝐶𝐶 ∈ 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 is undominated self-enforcing (U-self-enforcing) for Γ |𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 if, for all 𝐷𝐷𝐷𝐷 ⊊ 𝐶𝐶𝐶𝐶 , 𝑠𝑠𝑠𝑠∗𝐷𝐷𝐷𝐷 is a UCP-NE for
Γ | (𝑠𝑠𝑠𝑠∗

𝐶𝐶𝐶𝐶\𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ) and 𝑠𝑠𝑠𝑠
∗
𝑖𝑖𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 for all 𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶 .

(b) 𝑠𝑠𝑠𝑠∗𝐶𝐶𝐶𝐶 is a UCP-NE for Γ |𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 if 𝑠𝑠𝑠𝑠∗𝐶𝐶𝐶𝐶 is U-self- enforcing in Γ |𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 and there is no U-self-enforcing 𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆 ∈ 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 for
Γ |𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 such that 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 , 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ) > 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠∗𝐶𝐶𝐶𝐶 , 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ) for all 𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶 .

If 𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑁𝑁 , 𝑠𝑠𝑠𝑠∗ ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 is defined as a UCP-NE for Γ. Let 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 (Γ) be the set of undominated coalition-proof Nash
equilibria for Γ.

Remark 1 We immediately obtain the following properties from the definitions of the equilibria.

(i) In every game Γ, every coalition-proof Nash equilibrium is a Nash equilibrium: 𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 (Γ) ⊆ 𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 (Γ).

(ii) In every game Γ, every undominated Nash equilibrium is a Nash equilibrium: 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 (Γ) ⊆ 𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 (Γ).

(iii) In every game Γ, every undominated coalition-proof Nash equilibrium is a Nash equilibrium: 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 (Γ) ⊆
𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 (Γ) ⊆ 𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 (Γ).

(iv) Let 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 be a strategy profile and𝐶𝐶𝐶𝐶 ⊊ 𝑁𝑁𝑁𝑁 be a coalition. Let 𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 ∈ 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 be a UCP-NE in Γ |𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 . Then, 𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 must
be a Nash equilibrium in Γ |𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 .

(v) 𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 (Γ) and 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 (Γ) are not always related by inclusion relation (see, for example, Example 1 of
Shinohara (2019)).

3 Results

Lemma 1 shows the equivalence between Nash equilibria and uncominated coalition-proof Nash equilibria for
any 𝜎𝜎𝜎𝜎-interactive game with 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME.

Lemma 1 If Γ = (𝑁𝑁𝑁𝑁, (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 , (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ) is a 𝜎𝜎𝜎𝜎-interactive game with 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME, then

𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 (Γ) = 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁𝑈𝑈𝑈𝑈 (Γ).

Proof. Suppose that IE holds. From the definitions of the Nash equilibrium and UCP-NE, it is immediately
apparent that every UCP-NE is a Nash equilibrium in Γ. Next, we show that every Nash equilibrium is a UCP-
NE. Suppose, to the contrary, that 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 is a Nash equilibrium, but not a UCP-NE for Γ. Then, there exist a
coalition 𝐶𝐶𝐶𝐶 ⊆ 𝑁𝑁𝑁𝑁 and a U-self-enforcing strategy profile 𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 ∈ 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 such that

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 , 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ) > 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) for all 𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶. (1)

Suppose that there exists 𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶 such that 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 , 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ) ≤ 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠). Then, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) = 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 ) since 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 is constant
in 𝑖𝑖𝑖𝑖’s strategies. We find that 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) ≥ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 ) since 𝑠𝑠𝑠𝑠 is a Nash equilibrium. We further find from 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 ) ≥
𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 , 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ) and IE that 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 ) ≥ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 , 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ). Finally, we obtain the result that 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) ≥ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 , 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ), which
contradicts (1). Thus, it follows that

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 , 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ) > 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) for all 𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶. (2)
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Suppose that 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 ≤ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 for all 𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶 . Then, by the non-decreasing property of 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 , we find that 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 , 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ) ≤ 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠)
for all 𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶 , which contradicts (2). Thus,

there exists 𝑗𝑗𝑗𝑗 ∈ 𝐶𝐶𝐶𝐶 such that 𝑡𝑡𝑡𝑡 𝑗𝑗𝑗𝑗 > 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 . (3)

By the definition of UCP-NE, 𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 must be a Nash equilibrium for Γ |𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 (see (iii) and (iv) of Remark 1). Thus, for
the player 𝑗𝑗𝑗𝑗 , 𝑡𝑡𝑡𝑡 𝑗𝑗𝑗𝑗 is a best reply to (𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 , 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ): 𝑡𝑡𝑡𝑡 𝑗𝑗𝑗𝑗 ∈ 𝑏𝑏𝑏𝑏 𝑗𝑗𝑗𝑗 (𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 , 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ). Finally, from 𝜎𝜎𝜎𝜎-SS, we obtain the result that 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 ∈ 𝑏𝑏𝑏𝑏 𝑗𝑗𝑗𝑗 (𝑠𝑠𝑠𝑠),
𝑡𝑡𝑡𝑡 𝑗𝑗𝑗𝑗 ∈ 𝑏𝑏𝑏𝑏 𝑗𝑗𝑗𝑗 (𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 , 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ), and 𝜎𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 (𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶 , 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ) > 𝜎𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 (𝑠𝑠𝑠𝑠) imply 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 ≥ 𝑡𝑡𝑡𝑡 𝑗𝑗𝑗𝑗 . This contradicts (3).

The proof when DE holds is similar. ■

Proposition 1 If Γ = (𝑁𝑁𝑁𝑁, (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 , (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ) is a 𝜎𝜎𝜎𝜎-interactive game with 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME, then

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (Γ) = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (Γ).

Proof. By Theorem 1 of Quartieri and Shinohara (2015), 𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (Γ) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (Γ) holds. In addition, by Lemma
1, 𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (Γ) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (Γ) = 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (Γ) holds. Finally, by the defitions of UCP-NE, NE and UNE, 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (Γ) ⊆
𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (Γ) ⊆ 𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (𝐺𝐺𝐺𝐺) = 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (Γ) (see Remark 1). Thus, 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (Γ) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (Γ). ■

Wefinally obtain the following corollary immediately fromLemma 1, Proposition 1, and the result of Quartieri
and Shinohara (2015).

Corollary 1 If Γ = (𝑁𝑁𝑁𝑁, (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 , (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ) is a 𝜎𝜎𝜎𝜎-interactive game with 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME, then

𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (Γ) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (Γ) = 𝑈𝑈𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (Γ) = 𝑈𝑈𝑈𝑈𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 (Γ).

𝜎𝜎𝜎𝜎-SS and -ME are crucial for the property that every coalition-proof Nash equilibrium always consists of
undominated strategies, which is exemplified in the following examples.

Example 1 continued. In this example, we additionally assume that 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎 ∈ R such that 𝑎𝑎𝑎𝑎 > 𝑏𝑏𝑏𝑏 and 𝑎𝑎𝑎𝑎 > 𝑎𝑎𝑎𝑎 .
Then, 𝜎𝜎𝜎𝜎-IE is satisfied while 𝜎𝜎𝜎𝜎-SS is not satisfied. As we already see, strategy profile (𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎) is a unique CP-NE,
but 𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎 are weakly dominated.

Example 2 Consider the game in Table 2, in which 𝑎𝑎𝑎𝑎,𝑏𝑏𝑏𝑏, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎 ∈ R and 𝑎𝑎𝑎𝑎 < 𝑏𝑏𝑏𝑏 < 𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎 < 𝑎𝑎𝑎𝑎 < 𝑎𝑎𝑎𝑎 . This
game satisfies 𝜎𝜎𝜎𝜎-SS, but does not satisfy 𝜎𝜎𝜎𝜎-ME. Strategy profile (𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎 ) is the only CP-NE, but it consists of weakly
dominated strategies. Strategies 𝑏𝑏𝑏𝑏 and 𝑎𝑎𝑎𝑎 are also weakly dominated strategies.

Table 2: Example 2

�����1
2

𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎 0, 40 40, 40 40, 40
𝑏𝑏𝑏𝑏 10, 41 45, 40 40, 35
𝑎𝑎𝑎𝑎 20, 38 50, 30 40, 20

Finally, we discuss the difference in the results between games with strategic complements and games with
strategic substitutes. Whether CP-NE consists of undominated strategies in games with strategic complements
is examined by Shinohara (2019). He examines this in the framework of quasi-super modular games, which are
games with strategic complements because the best response correspondence of every player is non-decreasing
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with regard to the other players’ strategies in the games. We summarize the results of Shinohara (2019) as
follows:

(C.1) Weakly dominated strategies may constitute a CP-NE.

(C.2) The set of CP-NE and that of UCP-NE both exist, but they may not be related by inclusion.

(C.3) The set of UCP-NE is a subset of the set of UNE. However, they do not necessarily coincide.

We can observe the above three points from Example 1 of Shinohara (2019).
In contrast to the above properties, we obtain the following properties in games with strategic substitutes:

(S.1) Every CP-NE always consists of undominated strategies.

(S.2) The set of CP-NE and that of UCP-NE always coincide.

(S.3) The set of UCP-NE always coincides with the set of UNE.

Thus, the relation between CP-NE and undominated strategies is completely different between games with
strategic complements and games with strategic substitutes. If we consider that the refinement of Nash equilib-
ria should consist of undominated strategies, as Dekel and Fudenberg (1990) discuss, then CP-NE satisfies this
property in games with strategic substitutes. Unlike in the games with strategic complements, we do not have
to consider UCP-NE.

4 Conclusion

We examine whether coalition-proof Nash equilibria take undominated strategies in games with strategic sub-
stitutes and monotone externalities. In contrast to the results in games with strategic complements by Shinohara
(2019), we show that every coalition-proof Nash equilibrium is an undominated Nash equilibrium; hence, the
coalition-proof Nash equilibrium never consists of weakly dominated strategies in games with strategic sub-
stitutes. We also find as a by-product that the set of Nash equilibria coincides with that of undominated Nash
equilibria in those games.

Although the conditions of strategic substitutes and strategic complements capture many situations which
are frequently examined in the economic analysis, there are also many games of economic applications which
cannot be captured by those two conditions. Thus, as a future work, it would be interesting to explore the
relation between the coalition-proof Nash equilibrium and the undominated strategies in other classes of games.

Acknowledgments I gratefully acknowledge the financial support from the KAKENHI Grant-in-Aid for Scien-
tific Research (C) No. 18K01519.
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Coalitional equilibria in non-cooperative games with
strategic substitutes: Self-enforcing coalition deviations

and irreversibility∗

Ryusuke Shinohara†

Abstract

Introducing a coalitional equilibrium with restricted deviations, we examine how effectively equilibria based on
coalitional stability refine Nash equilibria in games with 𝜎𝜎𝜎𝜎-strategic substitutes and 𝜎𝜎𝜎𝜎-monotone externalities. From
the existing equilibria such as coalition-proof Nash equilibria and near-strong Nash equilibria, we can consider
several ways to restrict coalitional deviations. We incorporate two natural self-enforcing conditions of coalition
deviations, Nash stability and irreversibility, into the coalitional equilibrium and provide a more general analysis
than earlier studies. We find it impossible that in each of the two stability concepts, the coalitional equilibrium
effectively refines the Nash equilibrium for all games with 𝜎𝜎𝜎𝜎-strategic substitutes and 𝜎𝜎𝜎𝜎-monotone externalities.

Keywords: Coalitional equilibrium with restricted deviations; Nash stability; Irreversibility.

JEL classification: C72; D62

1 Introduction

We study the refinement of Nash equilibria in a strategic-form game with strategic substitutes (SS) and monotone
externalities (ME). Since this game has many examples of economic games such as the Cournot oligopoly game
and the game of the private provision of public goods, it is important from the viewpoint of applied game theory
to clarify characteristics of the equilibria of this game. The Nash equilibrium, the standard equilibrium concept
of the strategic-form game, is not necessarily uniquely determined in this game.1 Hence, we apply “coalitional
refinements” of the Nash equilibrium to the game.

Yi (1999) is the first study to apply the coalition-proof Nash equilibrium (Bernheim et al., 1987) to a class of games
with SS and ME. Yi (1999) shows that every Pareto-undominated pure-strategy Nash equilibrium is coalition-proof.
Shinohara (2010) shows that in the same game, the set of coalition-proof Nash equilibria coincides with the entire
set of pure-strategy Nash equilibria. Quartieri and Shinohara (2015) clarify many properties of the coalition-proof
Nash equilibria in 𝜎𝜎𝜎𝜎-interactive games with 𝜎𝜎𝜎𝜎-strategic substitutes (𝜎𝜎𝜎𝜎-SS) and 𝜎𝜎𝜎𝜎-monotone externalities (𝜎𝜎𝜎𝜎-ME),
which generalize Yi’s (1999) and Shinohara’s (2010) games. Quartieri and Shinohara (2015) show that the set of
coalition-proof Nash equilibria under strong Pareto dominance (sCPN equilibria, for short) and the entire set of
Nash equilibria coincide in these games. They also examine coalition-proof Nash equilibria under weak Pareto
dominance (wCPN equilibria, for short) and show that the set of wCPN equilibria also coincides with the set of Nash

∗This article is a translated version of R. Shinohara (2019) “Senryakutekidaitai gemu niokeru teikeikinkou: Teikeiridatsu no jikokousokusei
to fukagyakusei,” in R. Shinohara eds. Koukyoukeizaigaku to seijitekiyouin–Keizaiseisaku seido no hyouka to sekkei, Nippon Hyoron Sha, 37-56
(printed in Japanese). I would like to express deep appreciation to the Institute of Comparative Economic Studies, Hosei University (the copyright
holder of the Japanese version of this article) for the permission to translate the article.

†Department of Economics, Hosei University, 4342 Aihara-machi, Machida, Tokyo, 194-0298, Japan. Tel: (81)-42-783-2534. Fax: (81)-42-783-
2611. E-mail: ryusukes@hosei.ac.jp

1See Quartieri and Shinohara (2015) for examples of games that have multiple pure-strategy Nash equilibria.
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equilibria if the best reply correspondence of all players is at most singleton-valued in the same games. Another
familiar equilibrium to refine the Nash equilibria is a strong Nash equilibrium (Aumann, 1959). However, since the
strong Nash equilibrium is too demanding, the set of strong Nash equilibria may be empty, although the set of Nash
equilibria is nonempty in the games of Quartieri and Shinohara (2015). Therefore, it seems difficult that the familiar
equilibria based on coalitional stability single out a particular Nash equilibrium from multiple Nash equilibria for
games with 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME.

In this study, we examine whether the equilibrium based on coalitional stability that is both weaker than the
strong Nash equilibrium and stronger than the coalition-proof Nash equilibrium effectively refines the Nash equilib-
rium. Some “intermediate” equilibrium concepts already exist. We can take a semi-strong Nash equilibrium (Kaplan,
1992; Milgrom and Roberts, 1994) and a near-strong Nash equilibrium (Rozenfeld and Tennenholtz, 2010) as examples
of such equilibria.

What is new in this study is the introduction of a new concept of coalitional equilibria with restricted deviations,
which makes it possible to unify the analysis with the intermediate equilibria. The coalitional equilibrium with
restricted deviations is a non-cooperative equilibrium that is stable only against some restricted deviations. The re-
stricted deviations consist of the set of feasible coalitions and feasible deviation strategies for each feasible coalition.
They capture the idea that for geographical, legal, or political reasons and so on, not every player can communicate
with each other and coalitions that can form are restricted; each feasible coalition faces a self-enforcing problem
and its feasible deviation strategies are surely restricted in order for it to execute the deviation. The merit of the
coalitional equilibrium with restricted deviations is that we can adequately restate several familiar equilibrium con-
cepts by setting the structure of feasible coalitions and that of feasible deviation strategies, which is formally stated
in Proposition 1 below.

We impose an admissible condition on the structure of feasible coalitions, so that deviations by each individual
player is possible. We impose two natural self-enforceabilities for deviation strategies, Nash stability (NS) and irre-
versibility (IR). NS requires that the deviation strategies of each feasible coalition must be a Nash equilibrium in the
game induced by taking players’ strategies outside the coalition as fixed. IR requires that the deviation strategies
of each feasible coalition must be robust to switching-back options: after the deviation, no member of the coalition
switches back to the strategy before deviation, taking the others’ strategies as fixed.2

We examine how effectively the coalitional equilibria under NS and IR refine Nash equilibria. We first show that
under the admissible structure of feasible coalitions, the set of the coalitional equilibria with NS coincides with the
set of Nash equilibria in every game with 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME. Hence, the coalitional equilibria with NS does not refine
the Nash equilibria. We second show that in games with 𝜎𝜎𝜎𝜎-single crossing property, which is stronger than 𝜎𝜎𝜎𝜎-SS,
and 𝜎𝜎𝜎𝜎-ME, the set of the coalitional equilibria with IR coincides with the set of Nash equilibria. While there is an
example of a game with 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME in which the coalitional equilibrium with IR refines the Nash equilibrium,
as Example 1 shows, there is a set of games with the same conditions in which Nash equilibria are multiple and the
coalitional equilibria with IR does not refine the Nash equilibrium.

We conclude that under NS, which seems to be acceptable as coalitional self-enforceability in non-cooperative
games, it is impossible that the coalitional equilibrium provides effective refinements of the Nash equilibrium for
games with 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME that have multiple Nash equilibria. If we would like to single out some particular Nash
equilibria among all the equilibria, we must make the self-enforcing requirement weaker than the NS. The IR is one
of the examples. However, it is another problem whether or not we accept the IR or weaker concepts, which do not
satisfy the NS, as a self-enforcing requirement because the NS can be considered as a “minimal requirement” for
self-enforceability of coalition deviations. Therefore, to refine the Nash-equilibrium analysis through the coalitional
equilibria, we must apply self-enforcing conditions, which are mathematically definable but may be unjustifiable as
“natural” coalitional behavior in economic meaning.

2As we will see later, the set of self-enforcing deviations in w and sCPN equilibria satisfy NS and IR. The set of feasible deviations in near-
strong Nash equilibria satisfy IR.
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Related literature
Ichiishi (1981) introduces a social coalitional equilibrium, which includes the Nash equilibrium and the core of coop-
erative games with nonsidepayments as special cases. In Ichiishi’s (1981) equilibrium, each feasible coalition faces
a restriction of deviation strategies. The feasible deviation strategies of a coalition depends on strategies of players
outside the coalition, as ours does. However, Ichiishi (1981) does not consider suitable notions of coalitional self-
enforceability, unlike ours. Also, in his equilibrium, the coalition that can be formed is not restricted: deviations by
any coalition are possible. Zhao (1992) introduces the hybrid solution, which can also express the Nash equilibrium
and the core by setting coalition structures appropriately. Laraki (2009) introduces an equilibrium concept called
a coalitional equilibrium. Like ours, in his equilibrium, the coalition formation is restricted. However, unlike ours,
the deviation strategies of each coalition are not restricted. His is equivalent with ours if each feasible coalition
can take all joint strategies in our equilibrium. In this sense, ours is more general than Laraki’s. Finally, we would
like to add that Ichiishi (1981), Zhao (1992), and Laraki (2009) focus on the existence of equilibria, but not on their
characterization of it. The coalitional refinements of Nash equilibria have been well studied for games with strategic
complements. See Milgrom and Roberts (1996), Quartieri (2013), and Shinohara (2019).

2 Preliminaries

2.1 Strategic substitutes and monotonic externalities in 𝝈𝝈𝝈𝝈-interactive games

A strategic-form game is a list Γ = (𝑁𝑁𝑁𝑁𝑁𝑁 (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ), in which 𝑁𝑁𝑁𝑁 is a finite and nonempty set of players and,
for each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 , 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ≠ ∅ is player 𝑖𝑖𝑖𝑖’s strategy set and 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 :

∏
𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 → R is player 𝑖𝑖𝑖𝑖’s payoff function.3 A subset of 𝑁𝑁𝑁𝑁

is called a coalition. For each coalition 𝐶𝐶𝐶𝐶 ⊆ 𝑁𝑁𝑁𝑁 and each strategy profile 𝑠𝑠𝑠𝑠 ∈ ∏
𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 , the set of strategy profiles for

coalition𝐶𝐶𝐶𝐶 ,
∏

𝑖𝑖𝑖𝑖∈𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 , is denoted by 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 . A typical element of 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 is denoted by 𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶 . Using this notation, we can express
𝑠𝑠𝑠𝑠 =

(
𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶 𝑁𝑁 𝑠𝑠𝑠𝑠𝑁𝑁𝑁𝑁 \𝐶𝐶𝐶𝐶

)
for each 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 . If a coalition is a singleton (that is, 𝐶𝐶𝐶𝐶 = {𝑖𝑖𝑖𝑖} for some 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 ), then we simply denote

its strategy profile by 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 and its set of strategy profiles 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 . Hereafter, the complement of coalition {𝑖𝑖𝑖𝑖} is denoted by
−𝑖𝑖𝑖𝑖 , not 𝑁𝑁𝑁𝑁 \{𝑖𝑖𝑖𝑖}, for simplicity.

For the game Γ, the best response correspondence of player 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 is defined as 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 : 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 → 2𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 such that

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 : 𝑠𝑠𝑠𝑠 ↦→ argmax
𝑧𝑧𝑧𝑧∈𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑧𝑧𝑧𝑧𝑁𝑁 𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 ) .

The game on which we focus satisfies 𝜎𝜎𝜎𝜎-interactivity, which is defined as follows:

Definition 1 A game Γ = (𝑁𝑁𝑁𝑁𝑁𝑁 (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ) is a 𝜎𝜎𝜎𝜎-interactive game if and only if

1. 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ⊆ R for each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 and

2. For each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 , there exists a function 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 : 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 → R such that 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 is non-decreasing in 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 ( 𝑗𝑗𝑗𝑗 ≠ 𝑖𝑖𝑖𝑖) and constant
in 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ; for all 𝑠𝑠𝑠𝑠𝑁𝑁 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 , if 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 and 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) = 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠), then 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) = 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠).

𝜎𝜎𝜎𝜎-strategic substitutes and 𝜎𝜎𝜎𝜎-single-crossing property exhibit non-increasing properties of the best response
function with regard to strategies of the rival players.

Definition 2 A 𝜎𝜎𝜎𝜎-interactive game Γ = (𝑁𝑁𝑁𝑁𝑁𝑁 (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ) satisfies 𝜎𝜎𝜎𝜎-interactive strategic substitutes (𝜎𝜎𝜎𝜎-SS) if and
only if for all (𝑥𝑥𝑥𝑥𝑁𝑁𝑥𝑥𝑥𝑥𝑁𝑁 𝑖𝑖𝑖𝑖) ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 × 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 × 𝑁𝑁𝑁𝑁 ,

𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 ∈ 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥) ,𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 ∈ 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥) and 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥) < 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥) implies𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 ≤ 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 .

Definition 3 A game Γ = [𝑁𝑁𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ] satisfies 𝜎𝜎𝜎𝜎-single crossing property (𝜎𝜎𝜎𝜎-SCP) if and only if for all 𝑥𝑥𝑥𝑥𝑁𝑁𝑥𝑥𝑥𝑥 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁

and all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 , if 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 < 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥) < 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥), and 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥) − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 𝑁𝑁 𝑥𝑥𝑥𝑥−𝑖𝑖𝑖𝑖 ) ≥ 0, then 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 𝑁𝑁 𝑥𝑥𝑥𝑥−𝑖𝑖𝑖𝑖 ) − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥) > 0.

3The model in this study is based on that in Quartieri and Shinohara (2015).
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Note that for each game, 𝜎𝜎𝜎𝜎-SCP implies 𝜎𝜎𝜎𝜎-SS, but the converse is not true. A game in Example 1 below satisfies
𝜎𝜎𝜎𝜎-SS, but not 𝜎𝜎𝜎𝜎-SCP.

Definition 4

• A 𝜎𝜎𝜎𝜎-interactive game Γ = [𝑁𝑁𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ] satisfies 𝜎𝜎𝜎𝜎-increasing externalities (𝜎𝜎𝜎𝜎-IE) if and only if for all 𝑥𝑥𝑥𝑥𝑁𝑁𝑥𝑥𝑥𝑥 ∈
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 , if 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 and 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥) ≤ 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥), then 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥) ≤ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥).

• A 𝜎𝜎𝜎𝜎-interactive game Γ = [𝑁𝑁𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ] satisfies 𝜎𝜎𝜎𝜎-decreasing externalities (𝜎𝜎𝜎𝜎-DE) if and only if
[𝑁𝑁𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑁𝑁 (−𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ] is a game with 𝜎𝜎𝜎𝜎-IE.

• A 𝜎𝜎𝜎𝜎-interactive game Γ = [𝑁𝑁𝑁𝑁𝑁𝑁 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ] satisfies 𝜎𝜎𝜎𝜎-monotone externalities (𝜎𝜎𝜎𝜎-ME) if and only if Γ satisfies
𝜎𝜎𝜎𝜎-IE or 𝜎𝜎𝜎𝜎-DE.

Our focus is limited to pure-strategies. Quartieri and Shinohara (2015) present several examples of games of
economic interest that satisfy 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME. They show examples that havemultiple pure-strategy Nash equilibria.
Hence, the class of our games also possibly includes games with multiple equilibria.

2.2 Preliminary results on coalition-proofness

The Nash equilibrium is defined as usual.

Definition 5 Let Γ = (𝑁𝑁𝑁𝑁𝑁𝑁 (𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ) be a game. A strategy profile 𝑠𝑠𝑠𝑠 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is a Nash equilibrium for Γ if and
only if 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ∈ 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 . The set of Nash equilibria in Γ is denoted by 𝐸𝐸𝐸𝐸Γ

𝑁𝑁𝑁𝑁 .

Pareto domination among strategy profiles are also usual.

Definition 6 Let Γ = (𝑁𝑁𝑁𝑁𝑁𝑁 (𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ) be a game. A strategy profile 𝑠𝑠𝑠𝑠 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 strongly Pareto dominates in Γ a
strategy profile 𝑧𝑧𝑧𝑧 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 if and only if 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑧𝑧𝑧𝑧) < 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 . The s-efficient subset of 𝐸𝐸𝐸𝐸Γ

𝑁𝑁𝑁𝑁 is the set of Nash
equilibria for Γ that are not strongly Pareto dominated in Γ by other Nash equilibria for Γ. The s-efficient subset of
𝐸𝐸𝐸𝐸Γ
𝑁𝑁𝑁𝑁 is denoted by 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Γ

𝑁𝑁𝑁𝑁 .

For preparation, we introduce a notion of induced games.

Definition 7 Let Γ = (𝑁𝑁𝑁𝑁𝑁𝑁 (𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ) be a game. Let 𝐶𝐶𝐶𝐶 ∈ 2𝑁𝑁𝑁𝑁 \ {∅}, 𝑠𝑠𝑠𝑠 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 , and for all 𝑖𝑖𝑖𝑖 ∈ 𝐶𝐶𝐶𝐶 , �̃�𝑢𝑢𝑢𝑖𝑖𝑖𝑖 : 𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶 → R,
�̃�𝑢𝑢𝑢𝑖𝑖𝑖𝑖 : 𝑧𝑧𝑧𝑧 ↦→ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑧𝑧𝑧𝑧𝑁𝑁 𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 ). The game induced by 𝐶𝐶𝐶𝐶 at 𝑠𝑠𝑠𝑠 is the game (𝐶𝐶𝐶𝐶𝑁𝑁 (𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝐶𝐶𝐶𝐶 𝑁𝑁 (�̃�𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝐶𝐶𝐶𝐶 ) and is denoted by Γ |𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶 .

A coalition-proof Nash equilibrium, introduced in Bernheim et al. (1987), is as follows.

Definition 8 Let Γ = (𝑁𝑁𝑁𝑁𝑁𝑁 (𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ) be a game. If |𝑁𝑁𝑁𝑁 | = 1, then 𝑠𝑠𝑠𝑠 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is an s-coalition-proof Nash equilib-
rium for Γ if and only if 𝑠𝑠𝑠𝑠 ∈ 𝐸𝐸𝐸𝐸Γ

𝑁𝑁𝑁𝑁 . Now assume that |𝑁𝑁𝑁𝑁 | ≥ 2 and that an s-coalition-proof Nash equilibrium has been
defined for games with fewer than |𝑁𝑁𝑁𝑁 | players. Then,

• 𝑠𝑠𝑠𝑠 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is an s-self-enforcing strategy for Γ if and only if it is an s-coalition-proof Nash equilibrium for Γ |𝑠𝑠𝑠𝑠−𝐶𝐶𝐶𝐶
for all nonempty 𝐶𝐶𝐶𝐶 ⊂ 𝑁𝑁𝑁𝑁 ;

• 𝑠𝑠𝑠𝑠 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is an s-coalition-proof Nash equilibrium for Γ if and only if it is s-self-enforcing for Γ and there does
not exist another s-self-enforcing strategy for Γ that strongly Pareto dominates 𝑠𝑠𝑠𝑠 in Γ.

The set of s-coalition-proof Nash equilibria in Γ is denoted by 𝐸𝐸𝐸𝐸Γ
𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑁𝑁𝑁𝑁 .

By definition, it is clear that 𝐸𝐸𝐸𝐸Γ
𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑁𝑁𝑁𝑁 ⊆ 𝐸𝐸𝐸𝐸Γ

𝑁𝑁𝑁𝑁 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Γ
𝑁𝑁𝑁𝑁 ⊆ 𝐸𝐸𝐸𝐸Γ

𝑁𝑁𝑁𝑁 for all Γ. As pointed out by Bernheim et al. (1987), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Γ
𝑁𝑁𝑁𝑁

and 𝐸𝐸𝐸𝐸Γ
𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑁𝑁𝑁𝑁 are not related by inclusion for some Γ. However, Quartieri and Shinohara (2015) show the equivalence

between these three sets in games with 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME.
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Result 1 (Quartieri and Shinohara, 2015) Let Γ be a 𝜎𝜎𝜎𝜎-interactive game with 𝜎𝜎𝜎𝜎-strategic substitutes and monotone
externalities. Then,

(1.1) 𝐸𝐸𝐸𝐸Γ
𝑁𝑁𝑁𝑁 = 𝐸𝐸𝐸𝐸Γ

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁𝑁𝑁 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Γ
𝑁𝑁𝑁𝑁 .

(1.2) If 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 is single-valued for each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 , then the set of Nash equilibria and the set of coalition-proof Nash equilibria
with weak domination coincide.4

The results suggest that in games with strategic substitutes and monotone externalities, it seems very problem-
atical that the coalition-proof Nash equilibrium refines the set of Nash equilibria when they are multiple. Hence,
our question moves to whether some other equilibrium concepts, which are stronger than the coalition-proof Nash
equilibrium, refine the Nash equilibrium.

2.3 Coalitional equilibria with restricted deviations

We introduce a new concept, called a coalitional equilibrium with restricted deviations. We provide a general notion
of restriction of coalition deviations such that the coalition deviations can be restricted to express some earlier
equilibrium concepts.

For a game Γ =
(
𝑁𝑁𝑁𝑁𝑁𝑁 (𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁

)
, C ⊆ 2𝑁𝑁𝑁𝑁 \{∅} is defined as a nonempty set of feasible coalitions: only the

coalitions in C can deviate. For each 𝐷𝐷𝐷𝐷 ∈ C and each 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 , denote the set of strategies that coalition 𝐷𝐷𝐷𝐷 can take
when deviating from 𝑠𝑠𝑠𝑠 by 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 . Denote R𝐷𝐷𝐷𝐷 ≡ (𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 )𝑠𝑠𝑠𝑠∈𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 for each 𝐷𝐷𝐷𝐷 ∈ C and RC ≡ (R𝐷𝐷𝐷𝐷 )𝐷𝐷𝐷𝐷∈C . We term a pair (C𝑁𝑁RC)
the set of feasible deviations.

Definition 9 Let Γ =
(
𝑁𝑁𝑁𝑁𝑁𝑁 (𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁

)
be a game. Let (C𝑁𝑁RC) be the set of feasible deviations. 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 is a

(C𝑁𝑁RC)-coalitional equilibrium in Γ if there do not exist 𝐷𝐷𝐷𝐷 ∈ C and 𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 ∈ 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 such that 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 𝑁𝑁 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) > 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) for each
𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 . The set of (C𝑁𝑁RC)-coalitional equilibrium in Γ is denoted by 𝐸𝐸𝐸𝐸Γ

(C,RC) .

Next, we introduce a few conditions for the set of feasible deviations. First of all, we introduce the notion of
admissibility, which requires that every player can deviate by using every strategy available to it. This requirement
seems very natural since each player is assumed to freely choose its strategies in noncooporative games.

Definition 10 (C𝑁𝑁RC) is admissible if for each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 and each 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 , {𝑖𝑖𝑖𝑖} ∈ C and 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 .

Henceforth, we assume that admissibility is satisfied.
The Nash stability for coalition deviations, defined as follows, seems reasonable under admissibility, because

agreed coalition deviations must be immune to the deviation by single members of the coalition under the situation
in which every player can take every strategy by admissibility.

Definition 11 Let Γ =
(
𝑁𝑁𝑁𝑁𝑁𝑁 (𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁

)
be a game. (C𝑁𝑁RC) satisfies Nash stability (NS) if for each 𝐷𝐷𝐷𝐷 ∈ C and

each 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 ,

𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 ⊆ 𝐸𝐸𝐸𝐸Γ |𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷
𝑁𝑁𝑁𝑁 = {𝑠𝑠𝑠𝑠 ′𝐷𝐷𝐷𝐷 ∈ 𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷 |𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠 ′𝐷𝐷𝐷𝐷 𝑁𝑁 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) ≥ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠 ′′𝑖𝑖𝑖𝑖 𝑁𝑁 𝑠𝑠𝑠𝑠 ′𝐷𝐷𝐷𝐷\{𝑖𝑖𝑖𝑖 }𝑁𝑁 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) for each 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 and each 𝑠𝑠𝑠𝑠 ′′𝑖𝑖𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 }.

A stability notion weaker than the NS is also introduced as follows:

Definition 12 Let Γ =
(
𝑁𝑁𝑁𝑁𝑁𝑁 (𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑁𝑁 (𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁

)
be a game. (C𝑁𝑁RC) satisfies irreversibility (IR) if for each 𝐷𝐷𝐷𝐷 ∈ C and

each 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 ,
𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 ⊆ {𝑠𝑠𝑠𝑠 ′𝐷𝐷𝐷𝐷 ∈ 𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷 |𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠 ′𝐷𝐷𝐷𝐷 𝑁𝑁 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) ≥ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 𝑁𝑁 𝑠𝑠𝑠𝑠 ′𝐷𝐷𝐷𝐷\{𝑖𝑖𝑖𝑖 }𝑁𝑁 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) for each 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷}.

4The coalition-proof Nash equilibria with weak domination can be defined as in Definition 8 by replacing strong Pareto dominance with weak
Pareto dominance. See, for instance, Shinohara (2005) and Quartieri and Shinohara (2015) for the precise definition.
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Denote (C,RC) satisfying NS and that satisfying IR by (C,R𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
C ) and (C,R𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

C ), respectively. These two notions
of stability capture the idea of “self-enforceability.” That is, although each feasible coalition can freely deviate from
certain strategies, no member of feasible coalitions can enforce the other members to take and stick to certain
deviation strategies. Hence, for a coalition deviation to be done assuredly, the deviation must be “stable” against
any further deviation by proper coalition. NS assumes that once a coalition deviates, then each individual member
of the coalition deviates further if he/she has a strategy that improves his/her payoff after the original deviation.
Under NS, each feasible coalition can conduct the deviations immune to such further deviations. IR is based on the
idea that if a coalition deviates, then each individual member of the coalition has an option to withdraw from the
deviation and switch back to the original strategy. Under IR, each feasible coalition deviates in such a way that no
member executes such an option. Clearly, if RC satisfies NS, then it also satisfies IR. Hence, for each C and for each
Γ, if a strategy profile is a (C,R𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

C )-coalitional equilibrium in Γ, then it is a (C,R𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
C )-coalitional equilibrium in Γ;

however, the converse is not true.
Proposition 1 summarizes the relation between the (C,RC)-coalitional equilibrium and several well-known

non-cooperative equilibria.

Proposition 1 Let Γ be a game and let (C,RC) be an admissible set of feasible deviations.

(1) 𝐸𝐸𝐸𝐸Γ
(C,RC) ⊆ 𝐸𝐸𝐸𝐸Γ

𝑁𝑁𝑁𝑁 . Further, if C = {{ 𝑗𝑗𝑗𝑗}| 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 }, then 𝐸𝐸𝐸𝐸Γ
(C,RC) = 𝐸𝐸𝐸𝐸Γ

𝑁𝑁𝑁𝑁 .

(2) If C = 2𝑁𝑁𝑁𝑁 \{∅} and 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 = 𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷 for each 𝐷𝐷𝐷𝐷 ∈ C and each 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 , then (C,RC)-coalitional equilibrium is equivalent
with the strong Nash equilibrium (Aumann, 1959).5

(3) If C = {𝑁𝑁𝑁𝑁, { 𝑗𝑗𝑗𝑗}𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 } and 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 = 𝐸𝐸𝐸𝐸Γ |𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷
𝑁𝑁𝑁𝑁 for each 𝐷𝐷𝐷𝐷 ∈ C and each 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 , then 𝐸𝐸𝐸𝐸Γ

(C,RC) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Γ
𝑁𝑁𝑁𝑁 .

(4) If C = 2𝑁𝑁𝑁𝑁 \{∅} and 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 = 𝐸𝐸𝐸𝐸Γ |𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷
𝑁𝑁𝑁𝑁 for each 𝐷𝐷𝐷𝐷 ∈ C for each 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 , then (C,RC)-coalitional equilibrium is

equivalent with the semi-strong Nash equilibrium in Γ (Kaplan, 1992; Milgrom and Roberts, 1994).6 Under the
same C and 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 for each 𝐷𝐷𝐷𝐷 ∈ C and each 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 , (C,RC)-coalitional equilibrium is an s-coalition-proof Nash
equilibrium in Γ.

(5) If C = 2𝑁𝑁𝑁𝑁 \{∅} and 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 = {𝑠𝑠𝑠𝑠 ′𝐷𝐷𝐷𝐷 ∈ 𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷 |𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠 ′𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) ≥ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑠 ′𝐷𝐷𝐷𝐷\{𝑖𝑖𝑖𝑖 }, 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) for each 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷} for each 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 and each
𝐷𝐷𝐷𝐷 ∈ C, then (C,RC)-coalitional equilibrium is equivalent with the near-strong Nash equilibrium (Rozenfeld and
Tenneholz, 2010).7

Proof of Proposition 1 is in the Appendix.

Remark 1 Milgrom and Roberts (1996) incorporate another notion of restricted coalition formation into the coalition-
proof Nash equilibrium. They define a coalition deviation process as a finite sequence of coalitions 𝜎𝜎𝜎𝜎 = (𝐶𝐶𝐶𝐶1, . . . ,𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚)
such that 𝑚𝑚𝑚𝑚 is a positive integer and 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 ⊊ · · · ⊊ 𝐶𝐶𝐶𝐶1 ⊆ 𝑁𝑁𝑁𝑁 : this sequence indicates that 𝐶𝐶𝐶𝐶1 can communicate to
deviate from a strategy profile; once 𝐶𝐶𝐶𝐶1 has deviated, then 𝐶𝐶𝐶𝐶2 can plan a further deviation from the 𝐶𝐶𝐶𝐶1’s deviation,
and so on. The set of such sequences, generically denoted by Σ, is called a coalition communication structure (CCS).
Milgrom and Roberts (1996) impose CCS on some admissibility conditions, which implies that every coalition in
the sequences take a Nash equilibrium in the corresponding induced game, and they define a coalition-proof Nash
equilibrium with CCS along the sequences in Σ, recursively. As in Definition 8, each feasible coalition designated
by CCS takes a self-enforcing deviation when deviating. By the definition of the coalition-proof Nash equilibria
with CCS, the self-enforcing deviations must be a Nash equilibrium in the corresponding induced game. Thus,

5A strategy profile 𝑠𝑠𝑠𝑠 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is a strong Nash equilibrium if and only if there is no pair (𝐷𝐷𝐷𝐷, 𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 ) ∈ 2𝑁𝑁𝑁𝑁 \{∅} ×𝑁𝑁𝑁𝑁𝐷𝐷𝐷𝐷 such that𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) < 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 )
for each 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 .

6A strategy profile 𝑠𝑠𝑠𝑠 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is a semi-strong Nash equilibrium if and only if there is no pair (𝐷𝐷𝐷𝐷, 𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 ) ∈ 2𝑁𝑁𝑁𝑁 \{∅} × 𝐸𝐸𝐸𝐸
Γ |𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷
𝑁𝑁𝑁𝑁 such that 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) <

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) for each 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 .
7A strategy profile 𝑠𝑠𝑠𝑠 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is a near-strong Nash equilibrium if there is no pair (𝐷𝐷𝐷𝐷, 𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 ) ∈ 2𝑁𝑁𝑁𝑁 \{∅}×𝑁𝑁𝑁𝑁𝐷𝐷𝐷𝐷 such that for each 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 ,𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) >

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) and 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) ≥ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷\{𝑖𝑖𝑖𝑖}, 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷∪{𝑖𝑖𝑖𝑖}) .
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if C = {𝐷𝐷𝐷𝐷 ⊆ 𝑁𝑁𝑁𝑁 |𝐷𝐷𝐷𝐷 is the first element of some 𝜎𝜎𝜎𝜎 ∈ Σ} and 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 = 𝐸𝐸𝐸𝐸Γ |𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷
𝑁𝑁𝑁𝑁 for each 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 and each 𝐷𝐷𝐷𝐷 ∈ C, then

(C,RC)-coalitional equilibrium is a coalition-proof Nash equilibrium with Σ.8

3 Results

The following lemma is a result commonly used in the proof of Propositions 2 and 3.

Lemma 1 Let Γ = (𝑁𝑁𝑁𝑁, (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 , (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ) be a 𝜎𝜎𝜎𝜎-interactive game with 𝜎𝜎𝜎𝜎-ME. For each 𝑠𝑠𝑠𝑠 ∈ 𝐸𝐸𝐸𝐸Γ
𝑁𝑁𝑁𝑁 and each 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 , if

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) > 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) for each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 , then 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) < 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) for each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 when Γ is a game with 𝜎𝜎𝜎𝜎-IE and 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) > 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) for
each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 when Γ is a game with 𝜎𝜎𝜎𝜎-DE.

Proof. We provide a proof in the case of 𝜎𝜎𝜎𝜎-IE. The case of 𝜎𝜎𝜎𝜎-DE is similar. Suppose that there exists 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 such that
𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑠𝑠𝑠𝑠) > 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑠𝑠𝑠𝑠) and 𝜎𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 (𝑠𝑠𝑠𝑠) ≥ 𝜎𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 (𝑠𝑠𝑠𝑠). Since 𝑠𝑠𝑠𝑠 ∈ 𝐸𝐸𝐸𝐸Γ

𝑁𝑁𝑁𝑁 , then 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑠𝑠𝑠𝑠) ≥ 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 , 𝑠𝑠𝑠𝑠−𝑗𝑗𝑗𝑗 ). Since 𝜎𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 is constant in the 𝑗𝑗𝑗𝑗-th argument,
then 𝜎𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 (𝑠𝑠𝑠𝑠) = 𝜎𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 (𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 , 𝑠𝑠𝑠𝑠−𝑗𝑗𝑗𝑗 ) ≥ 𝜎𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 (𝑠𝑠𝑠𝑠). By 𝜎𝜎𝜎𝜎-IE, 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 , 𝑠𝑠𝑠𝑠−𝑗𝑗𝑗𝑗 ) ≥ 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑠𝑠𝑠𝑠). Thus, 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑠𝑠𝑠𝑠) ≤ 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑠𝑠𝑠𝑠), which is a contradiction. ■

Note that this lemma is irrelevant to 𝜎𝜎𝜎𝜎-SS.

3.1 Coalitional equilibria with NS

Proposition 2 Suppose that Γ is a 𝜎𝜎𝜎𝜎-interactive game with 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME, C is an admissible set of feasible coali-
tions, and RC are feasible deviations satisfying NS. Then, 𝐸𝐸𝐸𝐸Γ

(C,RC) = 𝐸𝐸𝐸𝐸Γ
𝑁𝑁𝑁𝑁 .

Proof. Consider games with 𝜎𝜎𝜎𝜎-IE. The proof for the games with 𝜎𝜎𝜎𝜎-DE is similar. By part (1) of Proposition 1,
𝐸𝐸𝐸𝐸Γ
(C,RC) ⊆ 𝐸𝐸𝐸𝐸Γ

𝑁𝑁𝑁𝑁 . We show the converse. Suppose, to the contrary, that there exists 𝑠𝑠𝑠𝑠 ∈ 𝐸𝐸𝐸𝐸Γ
𝑁𝑁𝑁𝑁 \𝐸𝐸𝐸𝐸Γ

(C,RC) . Then, 𝐷𝐷𝐷𝐷 ∈ C
and 𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 ∈ 𝐸𝐸𝐸𝐸Γ |𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷

𝑁𝑁𝑁𝑁 exist such that 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) > 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) for each 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 . Since 𝑠𝑠𝑠𝑠 ∈ 𝐸𝐸𝐸𝐸Γ
𝑁𝑁𝑁𝑁 and 𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 ∈ 𝐸𝐸𝐸𝐸Γ |𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷

𝑁𝑁𝑁𝑁 , then 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ∈ 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠)
and 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ∈ 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) for each 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 . Applying Lemma 1 to Γ |𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 yields 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) > 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) for each 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 . Since
𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 is non-decreasing in all arguments, then the last inequality implies that there exists 𝑖𝑖𝑖𝑖∗ ∈ 𝐷𝐷𝐷𝐷 such that 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖∗ > 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖∗ .
However, by 𝜎𝜎𝜎𝜎-SS, 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖∗ (𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) > 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖∗ (𝑠𝑠𝑠𝑠), 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖∗ ∈ 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖∗ (𝑠𝑠𝑠𝑠), and 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖∗ ∈ 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖∗ (𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) imply 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖∗ ≤ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖∗ , which is a contradiction.

■

By Proposition 2, in games with 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME, the (C,R𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
C )-coalitional equilibrium exists whenever the Nash

equilibrium does. However, no (C,R𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
C )-coalitional equilibrium refines the set of Nash equilibria. As we see in (4)

of Proposition 1, the semi-strong Nash equilibrium, which is stronger than the s-coalition-proof Nash equilibria,
can be expressed by a (C,R𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

C )-coalitional equilibrium with some (C,R𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
C ). Even if we use an equilibrium concept

that is stronger than the s-coalition-proof Nash equilibrium, if it is based on the NS, then it never refines the Nash
equilibrium in games with 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME. This result points out the difficulty of refining the Nash equilibria by the
equilibrium based on NS.

This result stems from the order structure of the set of Nash equilibria in games with 𝜎𝜎𝜎𝜎-SS. As Quartieri and
Shinohara (2015) show in their Theorem 2, in each game Γ with 𝜎𝜎𝜎𝜎-SS, it is impossible that 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) < 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁

and all distinct 𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠 ∈ 𝐸𝐸𝐸𝐸Γ
𝑁𝑁𝑁𝑁 . However, by Lemma 1, in each game with 𝜎𝜎𝜎𝜎-IE (resp. 𝜎𝜎𝜎𝜎-DE), 𝑠𝑠𝑠𝑠 strongly Pareto dominates

𝑠𝑠𝑠𝑠 only if 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) < 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) (resp. 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) > 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠)) for each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 . These apply to any game induced by any 𝑠𝑠𝑠𝑠 ′ ∈ 𝑆𝑆𝑆𝑆 and any
𝐷𝐷𝐷𝐷 ⊆ 𝑁𝑁𝑁𝑁 . Therefore, NS and coalitional profitability are incompatible in games with 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME.

3.2 Coalitional equilibria with IR

We examine whether a coalitional equilibrium with IR, which is stronger than that with NS, refines the Nash equi-
librium in 𝜎𝜎𝜎𝜎-interactive games with 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME. Proposition 3 shows that given C, the coalitional equilibria
with IR do not refine the Nash equilibria in a proper subclass of 𝜎𝜎𝜎𝜎-interactive games with 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME.

8Shinohara (2010) shows that the set of coalition-proof Nash equilibria with CCS coincides with the entire set of Nash equilibria in games
with strategic substitutes and monotone externalities. See Proposition 2 of Shinohara (2010).
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Figure 1: The graph of 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 . The left figure is the case of 𝑧𝑧𝑧𝑧 > 4.4 and the right figure is the case of 𝑧𝑧𝑧𝑧 ≤ 4.4.

Proposition 3 Suppose that Γ is a 𝜎𝜎𝜎𝜎-interactive game with 𝜎𝜎𝜎𝜎-SCP and 𝜎𝜎𝜎𝜎-ME, C is an admissible set of feasible
coalitions, and RC represents feasible deviations satisfying IR. Then, 𝐸𝐸𝐸𝐸Γ

(C,RC) = 𝐸𝐸𝐸𝐸Γ
𝑁𝑁𝑁𝑁 .

Proof. We treat the case of 𝜎𝜎𝜎𝜎-IE. The case of 𝜎𝜎𝜎𝜎-DE is similar. By part (1) of Proposition 1, 𝐸𝐸𝐸𝐸Γ
(C,RC) ⊆ 𝐸𝐸𝐸𝐸Γ

𝑁𝑁𝑁𝑁 . We show
the converse. Suppose, to the contrary, that there exists 𝑠𝑠𝑠𝑠 ∈ 𝐸𝐸𝐸𝐸Γ

𝑁𝑁𝑁𝑁 \𝐸𝐸𝐸𝐸Γ
(C,RC) . Then, there exists 𝐷𝐷𝐷𝐷 ∈ C and 𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 ∈ 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷

such that for each 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 , (a) 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) > 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) and (b) 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) ≥ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷\{𝑖𝑖𝑖𝑖 }, 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ). By (a), applying Lemma 1
to Γ |𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 yields 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) < 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) for each 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 . By this condition, we have 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖∗ < 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖∗ for some 𝑖𝑖𝑖𝑖∗ ∈ 𝐷𝐷𝐷𝐷 . Since 𝑠𝑠𝑠𝑠 is
a Nash equilibrium, then 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖∗ (𝑠𝑠𝑠𝑠) − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖∗ (𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 ) ≥ 0. By the 𝜎𝜎𝜎𝜎-SCP, 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖∗ < 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖∗ , and 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖∗ (𝑠𝑠𝑠𝑠) < 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖∗ (𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ), we reveal that
𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖∗ (𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷\{𝑖𝑖𝑖𝑖 }, 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖∗ (𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) > 0, which is a contradiction with (b). ■

The set of 𝜎𝜎𝜎𝜎-interactive games with 𝜎𝜎𝜎𝜎-SCP is a proper subset of the set of games with 𝜎𝜎𝜎𝜎-SS. For example, see
Example 1, which provides a game satisfying 𝜎𝜎𝜎𝜎-SS but not 𝜎𝜎𝜎𝜎-SCP. The implication of the result is that in games
with 𝜎𝜎𝜎𝜎-SCP and 𝜎𝜎𝜎𝜎-ME, the coalitional equilibrium with IR exists whenever a Nash equilibrium exists. However, the
coalitional equilibrium with IR never refines the Nash equilibrium.

However, the following example shows the possibility that the coalitional equilibrium with IR works as a refine-
ment of the Nash equilibrium in games with 𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME but not 𝜎𝜎𝜎𝜎-SCP.

Example 1 Let Γ = (𝑁𝑁𝑁𝑁, (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 , (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ) be such that 𝑁𝑁𝑁𝑁 = {1, 2} and for each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 , 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = [0, 5.6] and

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 ) =




10 − 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 − 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 if 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ∈ [0, 1]
2

9 − 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 +

79 − 18𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 + 𝑠𝑠𝑠𝑠2𝑗𝑗𝑗𝑗
9 − 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗

if 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ∈ [1,min{10 − 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 , 5.6}]

10 − 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 if 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ∈
(
min{10 − 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 , 5.6}, 5.6

]
and 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 > 4.4

, (1)

where 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 . Suppose that C = 2𝑁𝑁𝑁𝑁 \{∅} and 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 = {𝑠𝑠𝑠𝑠 ′𝐷𝐷𝐷𝐷 ∈ 𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷 |𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠 ′𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) ≥ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑠 ′𝐷𝐷𝐷𝐷\{𝑖𝑖𝑖𝑖 }, 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) for each 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷} for each
𝐷𝐷𝐷𝐷 ∈ C and each 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 . We denote a typical graph of 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 when fixing 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 = 𝑧𝑧𝑧𝑧 in Figure 1.

Fact 1 Let 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 for each pair 𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 such that 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗 and each 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 . This game is then a game with 𝜎𝜎𝜎𝜎-SS and
𝜎𝜎𝜎𝜎-DE, but not 𝜎𝜎𝜎𝜎-SCP.

Fact 2 It follows that ∅ ≠ 𝐸𝐸𝐸𝐸Γ
(C,RC) ⊊ 𝐸𝐸𝐸𝐸Γ

𝑁𝑁𝑁𝑁 .

Proofs of Facts 1 and 2 are in the Appendix.
By Proposition 2, no coalitional equilibria based on Nash stable coalitional deviations refine the Nash equilib-

ria: hence, the s-coalition-proof Nash equilibria and the semi-strong Nash equilibria are not refinements of Nash
equilibria. In addition, since the best response correspondence of each player is singleton-valued, then the set of
coalition-proof Nash equilibria under weak Pareto domination does not refine the Nash equilibria either (see Result
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1-(1.2)).9 Of course, no strong Nash equilibrium exists. Thus, by this example, we can point out that in games with
𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME, but not 𝜎𝜎𝜎𝜎-SCP, a coalitional equilibrium with IR may provide a refinement of the Nash equilibrium,
although the equilibrium concepts which are frequently used in economics can not refine the Nash equilibrium.10

4 Conclusion

Introducing the coalitional equilibrium with restricted deviations, we examine how effectively equilibria based on
coalitional stability refine Nash equilibria in 𝜎𝜎𝜎𝜎-interactive games with strategic substitutes and monotone external-
ities. The coalitional equilibrium with restricted deviations can express several familiar equilibria as special cases
by setting feasible coalition deviations appropriately. Thereby, we can provide a unified analysis for the issue.

We impose two stability conditions (NS and IR) on feasible coalition deviations. First, we have shown that the
set of the coalitional equilibria with NS coincides with the set of Nash equilibria in every 𝜎𝜎𝜎𝜎-interactive game with
𝜎𝜎𝜎𝜎-SS and 𝜎𝜎𝜎𝜎-ME. Hence, the coalitional equilibria with NS does not refine the Nash equilibria in that game. Second,
we have pointed out the possibility that the coalitional equilibrium with IR, which is stronger than the equilibrium
with NS, singles out a particular Nash equilibrium from all Nash equilibria in that game. We observe this possibility
in 𝜎𝜎𝜎𝜎-interactive games that satisfy 𝜎𝜎𝜎𝜎-SS, but not 𝜎𝜎𝜎𝜎-SCP (see Example 1).

If no member of a coalition can force other members to take certain deviation strategies, then whether the
coalition deviation is possible depends on whether it is “self-enforcing”. As discussed previously, requiring the NS
on coalition deviations seems reasonable in non-cooperative games because the NS is immune to all single-member
deviations of the coalition. Hence, we can consider the NS as the “minimal requirement” for self-enforceability of
coalition deviations. On the other hand, the IR is weaker than the NS, and hence it does not satisfy this minimal
requirement. If we would like to single out a particular Nash equilibrium from multiple Nash equilibria, we must
apply self-enforcing conditions, which are mathematically definable but may be unjustifiable as “natural" coalitional
behavior in economic meaning.

Appendix: Proofs

Proof of Proposition 1

(1), (2), (3), and (5) are immediate from the definitions of equilibria.
(4) Let 𝐷𝐷𝐷𝐷 ∈ C and let 𝑠𝑠𝑠𝑠 ∈ 𝐸𝐸𝐸𝐸Γ

(C,RC) . First, suppose that 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 = 𝐸𝐸𝐸𝐸Γ |𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷
𝑁𝑁𝑁𝑁 . By the definition of s-coalition-proof

Nash equilibrium, the set of s-self-enforcing deviations of 𝐷𝐷𝐷𝐷 is a subset of 𝐸𝐸𝐸𝐸Γ |𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷
𝑁𝑁𝑁𝑁 . Second, suppose that 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 =

{𝑠𝑠𝑠𝑠 ′𝐷𝐷𝐷𝐷 ∈ 𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷 |𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠 ′𝐷𝐷𝐷𝐷 , 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) ≥ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑠 ′𝐷𝐷𝐷𝐷\{𝑖𝑖𝑖𝑖 }, 𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷 ) for each 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷}. We then note that 𝐸𝐸𝐸𝐸Γ |𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷
𝑁𝑁𝑁𝑁 ⊆ 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝐷𝐷𝐷𝐷 and the set of s-self-

enforcing deviations of 𝐷𝐷𝐷𝐷 is a subset of 𝐸𝐸𝐸𝐸Γ |𝑠𝑠𝑠𝑠−𝐷𝐷𝐷𝐷
𝑁𝑁𝑁𝑁 . Hence, in any case, (C,RC)-coalitional equilibrium is robust to the

self-enforcing deviations. ■

Proof of Fact 1

First, as a preparation for proof of Fact 1, we show Claim 1.

Claim 1 If 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = [0, 5.6] for each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 , then 10 − 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 − 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 , 10 − 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 , and 2
9−𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 +

79−18𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗+𝑠𝑠𝑠𝑠2𝑗𝑗𝑗𝑗
9−𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 are decreasing in 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 .

Proof of Claim 1. Clearly, 10 − 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 − 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 and 10 − 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 are decreasing in 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 . Differentiating 2
9−𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 +

79−18𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗+𝑠𝑠𝑠𝑠2𝑗𝑗𝑗𝑗
9−𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 in 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 , we

9The coalition-proof Nash equilibrium under weak Pareto domination is defined by replacing strong Pareto dominance of s-coalition-proof
Nash equilibria with weak Pareto dominance. See also Corollary 2 in Quartieri and Shinohara (2015).

10For further information, all Nash equilibria in this example are strict Nash equilibria, which are also trembling-hand-perfect Nash equilibria
(Selten, 1975; Okada, 1981). Hence, trembling perfection does not single out a particular Nash equilibrium either.
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have

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 𝑗𝑗𝑗𝑗

(
2

9 − 𝜕𝜕𝜕𝜕 𝑗𝑗𝑗𝑗
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖 +

79 − 18𝜕𝜕𝜕𝜕 𝑗𝑗𝑗𝑗 + 𝜕𝜕𝜕𝜕2𝑗𝑗𝑗𝑗
9 − 𝜕𝜕𝜕𝜕 𝑗𝑗𝑗𝑗

)
=
2𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖 − 𝜕𝜕𝜕𝜕2𝑗𝑗𝑗𝑗 + 18𝜕𝜕𝜕𝜕 𝑗𝑗𝑗𝑗 − 83

(9 − 𝜕𝜕𝜕𝜕 𝑗𝑗𝑗𝑗 )2
.

Since 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 = [0, 5.6], then 2𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖 − 𝜕𝜕𝜕𝜕2𝑗𝑗𝑗𝑗 + 18𝜕𝜕𝜕𝜕 𝑗𝑗𝑗𝑗 − 83 is maximized at (𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖 , 𝜕𝜕𝜕𝜕 𝑗𝑗𝑗𝑗 ) = (5.6, 5.6) and the maximum value is −2.36.

Thus, 2
9−𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖 +

79−18𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗+𝑠𝑠𝑠𝑠2𝑗𝑗𝑗𝑗
9−𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 is also decreasing in 𝜕𝜕𝜕𝜕 𝑗𝑗𝑗𝑗 . (End of Proof of Claim 1)

We first verify that this game satisfies 𝜎𝜎𝜎𝜎-DE. Let 𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥 ∈ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 and let 𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗 , 𝜕𝜕𝜕𝜕
′′
𝑗𝑗𝑗𝑗 ∈ 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 be such that 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗 < 𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗 . We show that

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗 ) ≥ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗 ). Note that 1 < min{10 − 𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗 , 5.6} ≤ min{10 − 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗 , 5.6} and the last inequality holds with equality
if 𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗 ≤ 4.4.

By Claim 1, if 𝑥𝑥𝑥𝑥 ∈ [0, 1] ∪ [1,min{10 − 𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗 , 5.6}] ∪ (min{10 − 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗 , 5.6}, 5.6], then 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗 ) < 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗 ) because

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥) =




10 − 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥 if 𝑥𝑥𝑥𝑥 ∈ [0, 1]
2

9−𝑧𝑧𝑧𝑧𝑥𝑥𝑥𝑥 + 79−18𝑧𝑧𝑧𝑧+𝑧𝑧𝑧𝑧2
9−𝑧𝑧𝑧𝑧 if 𝑥𝑥𝑥𝑥 ∈ [1,min{10 − 𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗 , 5.6}]

10 − 𝑥𝑥𝑥𝑥 if 𝑥𝑥𝑥𝑥 ∈ (min{10 − 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗 , 5.6}, 5.6]

for each 𝑥𝑥𝑥𝑥 ∈ {𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗 , 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗 }. If 𝑥𝑥𝑥𝑥 ∈
(
min{10 − 𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗 , 5.6}, min{10 − 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗 , 5.6}

]
, then 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗 ) = 10 − 𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗 and 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗 ) = 2

9−𝑠𝑠𝑠𝑠′′𝑗𝑗𝑗𝑗
𝑥𝑥𝑥𝑥 +

79−18𝑠𝑠𝑠𝑠′′𝑗𝑗𝑗𝑗 +(𝑠𝑠𝑠𝑠′′𝑗𝑗𝑗𝑗 )2
9−𝑠𝑠𝑠𝑠′′𝑗𝑗𝑗𝑗

. Denote 𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗 = 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗 + 𝑑𝑑𝑑𝑑 , where 𝑑𝑑𝑑𝑑 > 0. Then, we have

𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗 ) − 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑥𝑥𝑥𝑥, 𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗 ) =
−11 + 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗 + 2𝑥𝑥𝑥𝑥 + 𝑑𝑑𝑑𝑑 (9 − 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗 )

9 − 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗

>
−11 + 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗 + 2min{10 − 𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗 , 5.6} + 𝑑𝑑𝑑𝑑 (9 − 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗 )

9 − 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗

=




9−𝑠𝑠𝑠𝑠′′𝑗𝑗𝑗𝑗 +𝑑𝑑𝑑𝑑 (7−𝑠𝑠𝑠𝑠′′𝑗𝑗𝑗𝑗 )
9−𝑠𝑠𝑠𝑠′′𝑗𝑗𝑗𝑗

> 0 if min{10 − 𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗 , 5.6} = 10 − 𝜕𝜕𝜕𝜕 ′𝑗𝑗𝑗𝑗
0.2+𝑠𝑠𝑠𝑠′′𝑗𝑗𝑗𝑗 +𝑑𝑑𝑑𝑑 (9−𝑠𝑠𝑠𝑠′′𝑗𝑗𝑗𝑗 )

9−𝑠𝑠𝑠𝑠′′𝑗𝑗𝑗𝑗
> 0 otherwise

because 𝜕𝜕𝜕𝜕 ′′𝑗𝑗𝑗𝑗 ≤ 5.6. In conclusion, this game satisfies 𝜎𝜎𝜎𝜎-DE.
We secondly verify that this game satisfies 𝜎𝜎𝜎𝜎-SS. Let 𝑖𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 be such that 𝑖𝑖𝑖𝑖 ≠ 𝑖𝑖𝑖𝑖 and 𝜕𝜕𝜕𝜕 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 . First, if 𝜕𝜕𝜕𝜕 𝑗𝑗𝑗𝑗 ∈ (4.4, 5.6],

then 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝜕𝜕𝜕𝜕) is maximized at 𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖 = 10 − 𝜕𝜕𝜕𝜕 𝑗𝑗𝑗𝑗 as we can see in Figure 1. Second, if 𝜕𝜕𝜕𝜕 𝑗𝑗𝑗𝑗 ∈ [0, 4.4], then 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝜕𝜕𝜕𝜕) is locally
maximized at 𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖 = 0, 5.6 and 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (5.6, 𝜕𝜕𝜕𝜕 𝑗𝑗𝑗𝑗 ) − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (0, 𝜕𝜕𝜕𝜕 𝑗𝑗𝑗𝑗 ) = 0.2+𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗

9−𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 > 0. Therefore,

𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 (𝜕𝜕𝜕𝜕) =



{10 − 𝜕𝜕𝜕𝜕 𝑗𝑗𝑗𝑗 } if 𝜕𝜕𝜕𝜕 𝑗𝑗𝑗𝑗 ∈ (4.4, 5.6]
{5.6} otherwise

. (2)

Clearly, this is a game with 𝜎𝜎𝜎𝜎-SS.
We can also verify that this is not a game with 𝜎𝜎𝜎𝜎-SCP. We have that 𝑢𝑢𝑢𝑢1 (5.2, 4.5) = 𝑢𝑢𝑢𝑢1 (5.4, 4.5) = 5.5 and

𝑢𝑢𝑢𝑢1 (5.2, 5) = 𝑢𝑢𝑢𝑢1 (5.4, 5) = 5; hence, 𝑢𝑢𝑢𝑢1 (5.2, 4.5) − 𝑢𝑢𝑢𝑢1 (5.4, 4.5) = 𝑢𝑢𝑢𝑢1 (5.2, 5) − 𝑢𝑢𝑢𝑢1 (5.4, 5) = 0, which implies that this
game does not satisfy 𝜎𝜎𝜎𝜎-SS. ■

Proof of Fact 2

By (2),
𝐸𝐸𝐸𝐸Γ
𝑁𝑁𝑁𝑁 = {(𝜕𝜕𝜕𝜕1, 𝜕𝜕𝜕𝜕2) : 𝜕𝜕𝜕𝜕1 + 𝜕𝜕𝜕𝜕2 = 10 and 4.4 ≤ 𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖 ≤ 5.6 for each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 } .

First, we verify 𝑒𝑒𝑒𝑒∗ = (5, 5) ∈ 𝐸𝐸𝐸𝐸Γ
𝑁𝑁𝑁𝑁 \𝐸𝐸𝐸𝐸Γ

(C,RC) . The payoff to all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 at 𝑒𝑒𝑒𝑒∗ is 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑒𝑒𝑒𝑒∗) = 6. If the two players deviate
from 𝑒𝑒𝑒𝑒∗ to 𝑒𝑒𝑒𝑒 = (0, 0), then 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑒𝑒𝑒𝑒) = 10 for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 . If player 𝑖𝑖𝑖𝑖 switches back to 𝑒𝑒𝑒𝑒∗𝑖𝑖𝑖𝑖 = 5 given 𝑒𝑒𝑒𝑒 𝑗𝑗𝑗𝑗 for 𝑖𝑖𝑖𝑖 ≠ 𝑖𝑖𝑖𝑖 , then

20
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𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑒𝑒𝑒𝑒∗𝑖𝑖𝑖𝑖 , 𝑒𝑒𝑒𝑒 𝑗𝑗𝑗𝑗 ) = 89
9 . Therefore, no player 𝑖𝑖𝑖𝑖 switches back to the original strategy 𝑒𝑒𝑒𝑒∗𝑖𝑖𝑖𝑖 .

Second, we verify that 𝑒𝑒𝑒𝑒∗∗ = (4.4, 5.6) ∈ 𝐸𝐸𝐸𝐸Γ
(C,RC) . At 𝑒𝑒𝑒𝑒

∗∗, 𝑢𝑢𝑢𝑢1 (𝑒𝑒𝑒𝑒∗∗) = 5.4 and 𝑢𝑢𝑢𝑢2 (𝑒𝑒𝑒𝑒∗∗) = 6.6. Let 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 be deviating
strategies from 𝑒𝑒𝑒𝑒∗∗ such that 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) > 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑒𝑒𝑒𝑒∗∗) for each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 . Since this is a game with 𝜎𝜎𝜎𝜎-DE, then 𝑒𝑒𝑒𝑒∗∗𝑖𝑖𝑖𝑖 > 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 for each
𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 by Lemma 1. We then have

𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 < 𝑒𝑒𝑒𝑒∗∗𝑖𝑖𝑖𝑖 = 10 − 𝑒𝑒𝑒𝑒∗∗𝑗𝑗𝑗𝑗 < 10 − 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 for all 𝑖𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 such that 𝑖𝑖𝑖𝑖 ≠ 𝑖𝑖𝑖𝑖 . (3)

Claim 2 If there exist distinct 𝑖𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 such that 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ∈
[
1,min{10 − 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 , 5.6}

]
, then 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑒𝑒𝑒𝑒∗∗𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 ) > 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠).

Proof of Claim 2. By (3), 𝑒𝑒𝑒𝑒∗∗𝑖𝑖𝑖𝑖 ∈ [1,min{10 − 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 , 5.6}]. Hence, for each 𝑥𝑥𝑥𝑥 ∈ {𝑒𝑒𝑒𝑒∗∗𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 },

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑥𝑥𝑥𝑥, 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 ) =
1

9 − 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗

(
2𝑥𝑥𝑥𝑥 + 79 − 18𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 + (𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 )2

)

and 𝑒𝑒𝑒𝑒∗∗𝑖𝑖𝑖𝑖 > 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 implies 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑒𝑒𝑒𝑒∗∗𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 ) > 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑠𝑠𝑠𝑠). (End of Proof of Claim 2)

Claim 3 If there exist distinct 𝑖𝑖𝑖𝑖, 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 such that 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ∈
(
min{10 − 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 , 5.6}, 5.6

]
, then 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑒𝑒𝑒𝑒∗∗𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 ) > 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠).

Proof of Claim 3. Since 𝑒𝑒𝑒𝑒∗∗1 = 4.4 > 𝑠𝑠𝑠𝑠1, then it is impossible that 𝑖𝑖𝑖𝑖 = 2 and 𝑖𝑖𝑖𝑖 = 1. (If 𝑖𝑖𝑖𝑖 = 2 and 𝑖𝑖𝑖𝑖 = 1, then(
min{10 − 𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗 , 5.6}, 5.6

]
is empty.) We consider the case of 𝑖𝑖𝑖𝑖 = 1 and 𝑖𝑖𝑖𝑖 = 2. In this case, note that 𝑠𝑠𝑠𝑠2 ≥ 4.4. Since

𝑠𝑠𝑠𝑠2 ≤ 5.6, then min{10 − 𝑠𝑠𝑠𝑠2, 5.6} ≥ 4.4. Since 𝑒𝑒𝑒𝑒∗∗1 = 4.4, then 𝑒𝑒𝑒𝑒∗∗1 ∈ [1,min{10 − 𝑠𝑠𝑠𝑠2, 5.6}]. Hence,

𝑢𝑢𝑢𝑢1 (𝑠𝑠𝑠𝑠) − 𝑢𝑢𝑢𝑢1 (𝑒𝑒𝑒𝑒∗∗1 , 𝑠𝑠𝑠𝑠2) = 10 − 𝑠𝑠𝑠𝑠2 −
(
87.8 − 18𝑠𝑠𝑠𝑠2 + (𝑠𝑠𝑠𝑠2)2

9 − 𝑠𝑠𝑠𝑠2

)

=
2.2 − 𝑠𝑠𝑠𝑠2
9 − 𝑠𝑠𝑠𝑠2

< 0.

(End of Proof of Claim 3)

Claim 4 If 𝑠𝑠𝑠𝑠 ∈ [0, 1]2, then 𝑢𝑢𝑢𝑢2 (𝑠𝑠𝑠𝑠1, 𝑒𝑒𝑒𝑒∗∗2 ) > 𝑢𝑢𝑢𝑢2 (𝑠𝑠𝑠𝑠).

Proof of Claim 4. By (1), since 𝑠𝑠𝑠𝑠 ∈ [0, 1]2, then 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑠𝑠𝑠𝑠) ∈ [8, 10] for each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 . We have

𝑢𝑢𝑢𝑢2 (𝑠𝑠𝑠𝑠) − 𝑢𝑢𝑢𝑢2 (𝑠𝑠𝑠𝑠1, 𝑒𝑒𝑒𝑒∗∗2 ) = 10 − 𝑠𝑠𝑠𝑠1 − 𝑠𝑠𝑠𝑠2 −
(
90.2 − 18𝑠𝑠𝑠𝑠1 + (𝑠𝑠𝑠𝑠1)2

9 − 𝑠𝑠𝑠𝑠1

)

= −0.2 + 𝑠𝑠𝑠𝑠1 + 𝑠𝑠𝑠𝑠2 (9 − 𝑠𝑠𝑠𝑠1)
9 − 𝑠𝑠𝑠𝑠1

< 0

because 𝑠𝑠𝑠𝑠1 ≤ 1. (End of Proof of Claim 4)

By Claims 2 to 4, for each improving deviation 𝑠𝑠𝑠𝑠 , there is at least one player 𝑘𝑘𝑘𝑘 ∈ 𝑁𝑁𝑁𝑁 that switches back to 𝑒𝑒𝑒𝑒∗∗
𝑘𝑘𝑘𝑘
.

Therefore, 𝑒𝑒𝑒𝑒∗∗ ∈ 𝐸𝐸𝐸𝐸Γ
(C,RC) .

In conclusion, ∅ ≠ 𝐸𝐸𝐸𝐸Γ
(C,RC) ⊊ 𝐸𝐸𝐸𝐸Γ

𝑁𝑁𝑁𝑁 . ■
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Undertaking nonharmful or harmful public projects
through unit-by-unit contribution: Coordination and

Pareto efficiency

Ryusuke Shinohara∗

Abstract

We examine in detail the implementation of a project that is nonharmful for all agents as well
as a project that is harmful for some agents through a unit-by-unit contribution mechanism. For
a project that is nonharmful for all agents, efficient implementation is supported at one regular
Nash equilibrium and several refined Nash equilibria that are stable against coalition deviations.
In this sense, this mechanism works well. On the other hand, when the project is harmful for
some agents, this mechanism may not have a Nash equilibrium with efficient implementation of
the project. Even when such a Nash equilibrium exists, it may not be selected by any of the refined
Nash equilibria. Thus, in this case, this mechanism does not work. Our result shows that the merit
of the unit-by-unit contribution mechanism reported in the literature is partially extensible to the
implementation of a public project.

Keywords: Public project; Unit-by-unit contribution; Pareto efficiency; Strong Nash equilibria;
Coalition-proof Nash equilibria.

JEL Classification: C72, D62, D74, H41.

1 Introduction

We consider a public project implementation through a unit-by-unit contribution mechanism. We in-
vestigate in detail the implementation of a project that is nonharmful for all agents as well as a project
that is harmful for some agents. We examine under what conditions the project is undertaken Pareto-
efficiently through the unit-by-unit contribution mechanism.

The unit-by-unit contribution mechanism is introduced to provide a discrete pure public good in
integer units. As in a standard case of public-good provision in nonnegative real numbers, voluntary
public-good provision in nonnegative integer units suffers from the free-rider problem, so that the
public good is not supplied Pareto-efficiently.1 One of the solutions to this problem is to construct
public-good mechanisms. To solve the free-rider problem of an integer-unit public good, Bagnoli and
Lipman (1989) introduce a unit-by-unit contribution mechanism. Later, Brânzei et al. (2005) introduced
another mechanism, which is a little different from, but essentially the same as, Bagnoli and Lipman’s

∗Department of Economics, Hosei University, 4342 Aihara-machi, Machida, Tokyo, 194-0298, Japan. Tel: (81)-42-783-2534.
Fax: (81)-42-783-2611. E-mail: ryusukes@hosei.ac.jp

1For the voluntary provision of an integer-unit public good, see, for example, Bagnoli and Lipman (1989, p.591, last
paragraph), Gradstein and Nitzan (1990), and Shinohara (2009).
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(1989) mechanism2 and applied it to a public-good problem that is different from the Bagnoli and
Lipman (1989) problem. Their mechanisms for solving the problem are based on the idea that the level
of public-good provision is decided through a “unit-by-unit” process. In their mechanisms, agents are
asked to make marginal contributions to every one-unit increase in the public good. Based on the
contributions, starting from the first unit of the good, the quantity increases by one unit as long as
the sum of the marginal contributions to a one-unit increase covers its marginal cost. Bagnoli and
Lipman (1989) and Brânzei et al. (2005) show that the unit-by-unit contribution mechanism has a
Nash equilibrium at which the public good is provided Pareto-efficiently. Moreover, they show that
although this mechanism may have other Nash equilibria at which the public good is provided Pareto-
inefficiently, some refinements of Nash equilibria single out the Nash equilibria with efficient provision
of the public good. In this sense, the mechanism solves the free-rider problem of the provision of an
integer-unit public good.3

We could say that this mechanism is based on a “simple” rule: whether the public good increases by
one unit depends only on the relationship between the marginal contributions to and the marginal cost
of this increase and the payment from each agent is the sum of her announced marginal contributions
to each unit. Moreover, we could say that this mechanism is “suitable” in the provision of an integer-
unit public good because it utilizes a discrete structure of an integer-unit public good. Because of this
simplicity and suitability, it seems to have some applicability to the implementation of public projects
in the real world. Hence, it would be important to know how this mechanism works in the provision
of various public projects.

However, this mechanism has been tested under limited situations in the literature. Bagnoli and
Lipman (1989) and Brânzei et al. (2005) assume that agents have a quasi-linear utility function with
respect to a private good and benefits from a public good are measured in terms of the private good.
Bagnoli and Lipman (1989) assume that agents’ benefit functions from the public good are increasing
and strictly concave in level, which are seemingly standard conditions for public good provision. On
the other hand, Brânzei et al. (2005) assume that each agent has a threshold level of the public good
and receives a positive constant benefit if and only if the public good is provided at the threshold level
or higher. How this mechanism works has not been clarified in the implementation of public projects
that cannot be captured by those benefit structures.

Moreover, when it comes to public projects in the real world, they are sometimes harmful in the
sense that raising the level of a public project may decrease someone’s benefits. For example, consider
the construction of a high-speed railway (HSR) network such as the Shinkansen bullet-train projects in
Japan. This project connects Tokyo (the capital city) to the peripheral cities with HSR networks, which
have been extended sequentially.4 It is said that this extension has two sides: it may stimulate the local
economies since tourism is promoted and some companies in the capital city establish branch offices
in the local cities. On the other hand, it may create disadvantages such as outflow of population from
local cities. In reality, these positive and negative sides would determine the benefits to peripheral

2See a detailed explanation of this point in Section 2.
3To be precise, Bagnoli and Lipman (1989) use a refinement of trembling-perfect Nash equilibria and Brânzei et al. (2005)

use a strong Nash equilibrium (Aumann, 1959). Their refinement concepts are completely different. They prove that payoffs
attained at those refined Nash equilibria coincide with the core of a cooperative game. We also use several refinements of
Nash equilibria based on coalition formation, including the strong Nash equilibrium.

4For instance, Tokyo and Nagano City (a city about 220 km away from Tokyo) were connected by the HSR network in
1997. This network was extended to Kanazawa City (a city about 450 km away from Tokyo) in 2015.
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cities. Some empirical studies show that extension of the HSR network does not necessarily benefit
peripheral cities.5 If we interpret this extension as an increase in the project level, some agents might
lose their benefits from the project by the increase. This shows public project effects that cannot be
captured by the benefit structures of earlier studies. When examining the applicability of the unit-by-
unit contribution mechanism to the implementation of real-world public projects, we need to consider
the case in which a public project is harmful for some agents. However, this has not been considered
in the literature.

In order to examine applicability of the unit-by-unit contribution mechanism, we need to introduce
a framework that can capture as many public projects as possible. We introduce two types of public
projects—one is “nonharmful” for all agents and the other is sometimes “harmful” for some agents—and
examine the implementation of each public project through the unit-by-unit contribution mechanism.
Our aim is to clarify to what extent this mechanism achieves efficient public project implementation
in each case .

Firstly, a project is defined to be nonharmful for all agents if their benefit functions from the project
are weakly increasing in the level of the project. The weakly increasing benefit functions are worth
analyzing because they are a generalization of the benefit functions of Bagnoli and Lipman (1989) and
Brânzei et al. (2005). We show that the unit-by-unit contribution mechanism always has a Nash equi-
librium at which the nonharmful public project is undertaken Pareto-efficiently, although it may have
a Nash equilibrium at which the project is done inefficiently. We further prove that with and without
monetary transfers, the set of Nash equilibria with efficient project implementation coincides with the
set of strong Nash equilibria and the set of coalition-proof Nash equilibria (Bernheim et al., 1987) (The-
orem 1). These results show that although multiple public project levels may be supported at the Nash
equilibria, only Nash equilibria with efficient project implementation are supported by various Nash
equilibrium refinements that are robust to coalition deviations. Theorem 1 supplements the results of
earlier studies as follows: Firstly, in the earlier studies, the weakly increasing property of the benefit
functions is a key factor in the mechanism of efficient public good provision at a Nash equilibrium.
Second, the Nash equilibria for efficient projects are much more robust to coalition deviations than are
shown by Brânzei et al. (2005) because they test only a strong Nash equilibrium without transfers.

Secondly, a project is considered harmful for some agents if their benefit functions from the project
are not weakly increasing in level. We additionally impose weak concavity on the benefit functions
of all agents for tractability. We show that the unit-by-unit contribution mechanism does not always
work well in the implementation of a harmful project. Unlike in nonharmful projects, this mechanism
does not always have a Nash equilibrium with efficient public project implementation. Moreover, this
mechanism may have a Nash equilibrium at which the project is undertaken at a level exceeding the
efficient level. We establish necessary and sufficient conditions for a Nash equilibrium with imple-
mentation of the project at or over the efficient level (see Propositions 1 and 2). As for nonharmful
projects, these conditions lead to the possibility of multiple Nash equilibria with both efficient and
inefficient implementation of the public project. We then examine the strong Nash equilibrium and
coalition-proof Nash equilibrium to clarify the level of project implementation—the efficient level or
the over-implementation level—that is robust to coalition deviations. We observe that these refined

5For a Japanese case, see, for example, Sasaki et al. (1997). Similar effects have been observed from the extension of HSR
networks in European countries. See, for example, Ureña et al. (2009).
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Nash equilibria do not always select Nash equilibria with efficient project implementation. Firstly, we
find that the mechanism may not have strong Nash equilibria with or without transfers. Secondly, al-
though coalition-proof Nash equilibria with and without transfers do exist, they do not always single
out Nash equilibria with efficient project implementation. Coalition-proof Nash equilibria single out
Nash equilibria with efficient project implementation if and only if there is a Nash equilibrium with
efficient project implementation, and no other Nash equilibria with over-implementation (Theorem
3). Finally, we introduce a reasonably large class of modified unit-by-unit contribution mechanisms
and investigate whether this modified mechanism achieves the efficient undertaking of harmful public
projects. We show that no mechanism in this class implements an efficiency project in Nash equilibria
(Proposition 5).

In conclusion, when the project is nonharmful for all agents, the unit-by-unit contribution mech-
anism works well since it only achieves an efficient project at various refined Nash equilibria. On the
other hand, when the project is harmful for some agents, the mechanism does not necessarily work
since it may not have a Nash equilibrium with an efficient project. Furthermore, even if it has such
a Nash equilibrium, none of the refined Nash equilibria based on coalition deviations considered in
this paper singles it out. Thus, whether the unit-by-unit contribution mechanism works depends on
the properties of the project. The merit of the unit-by-unit contribution mechanism reported in the
literature is extensible to the implementation of a nonharmful project, but only partially extensible to
that of a harmful public project. If we aim to achieve efficient project implementation under general
benefit structures at various refined Nash equilibria based on coalition deviations, we need to consider
another class of modified unit-by-unit contribution mechanisms or construct new mechanisms.

Finally, we mention some related studies. Our conditions on benefit functions from a public project
could be compared with several classes of benefit functions of Laussel and Le Breton (2001). In our
model, if all agents have weakly increasing benefit functions, then the comonotonicity condition of
Laussel and Le Breton (2001) holds. Otherwise, it does not. The two-sided property of Laussel and Le
Breton (2001), another condition of benefit structures, does not hold in our model.6 Thus, our benefit
function conditions cannot be fully captured by the Laussel and Le Breton (2001) classes of benefit
functions. In this sense, we analyze a new class of benefit functions. However, note that Laussel and Le
Breton (2001) work on the common agency game, which is different from our unit-by-unit contribution
game because ours does not have a profit-maximizing common agency to implement public projects.
There seems to be little significance in comparing to compare their results with ours.

To the best of my knowledge, apart from Bagnoli and Lipman (1989) and Brânzei et al. (2005), only
Yu (2005) proposes a mechanism, which is completely different from the unit-by-unit contribution
mechanism, for provision of an integer-unit pure public good. Her two-stage mechanism implements
any one of the allocations in the core in an undominated subgame-perfect Nash equilibrium. A volun-

tary participation problem, pointed out by Saijo and Yamato (1999), can be captured as another free-rider
problem of public good provision related to the participation decision in a public good mechanism.
Nishimura and Shinohara (2013) propose a multi-stage mechanism, called a unit-by-unit participation
mechanism, and show that the idea of a unit-by-unit process can mitigate this problem. Although the
unit-by-unit participation mechanism and our mechanism are totally different, Nishimura and Shino-
hara (2013) do not explore the extensibility of the merit of the unit-by-unit participation mechanism

6For the definitions of comonotonicity and two-sidedness, see Laussel and Le Breton (2001).
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to the implementation of harmful or nonharmful projects. Shinohara (2014) investigates a voluntary
participation problem in which agents have the same benefit functions as those of Brânzei et al. (2005).
Shinohara (2014) does not study this extensibility, either.

The paper is organized as follows: Section 2 introduces themodel and equilibrium concepts. Section
3 presents the results for nonharmful projects. Section 4 provides the results for harmful projects.
Section 5 concludes the study. The proofs of the propositions in Sections 3 and 4 are collated in the
appendices.

2 The model

Consider an economy in which agents undertake a public project through contribution of a private
good (money). The level of the public project is assumed to take a nonnegative integer. Let Y =

{0, 1, . . . , 𝑦𝑦𝑦𝑦} be the set of project levels, where 𝑦𝑦𝑦𝑦 is an integer greater than or equal to one, and the
finite upper bound of the public project level. Let 𝑐𝑐𝑐𝑐 : Y → R+ be a cost function of the project such
that 𝑐𝑐𝑐𝑐 (0) = 0. For all 𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 ′ ∈ Y such that 𝑦𝑦𝑦𝑦 ≥ 𝑦𝑦𝑦𝑦 ′, let Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 ′) ≡ 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦) −𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 ′) be the additional (marginal)
cost from 𝑦𝑦𝑦𝑦 ′ to 𝑦𝑦𝑦𝑦 units. We assume that 𝑐𝑐𝑐𝑐 is an increasing and weakly convex function in Y: that is,

Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦) > 0 for all 𝑦𝑦𝑦𝑦 ∈ Y
and Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦) ≥ Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 ′ + 1, 𝑦𝑦𝑦𝑦 ′) for all 𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 ′ ∈ Y such that 𝑦𝑦𝑦𝑦 > 𝑦𝑦𝑦𝑦 ′.

(1)

Let 𝑁𝑁𝑁𝑁 = {1, . . . , 𝑛𝑛𝑛𝑛} be the set of agents such that 𝑛𝑛𝑛𝑛 is a finite integer and 𝑛𝑛𝑛𝑛 ≥ 1. Each agent 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁

has a quasi-linear utility function𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖 : Y×R+ → R such that𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦, 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖) = 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦) −𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 , in which𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 : Y → R
is agent 𝑖𝑖𝑖𝑖’s benefit function from the project with 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (0) = 0 and 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 is 𝑖𝑖𝑖𝑖’s private-good contribution to
the project. For all 𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 ′ ∈ Y such that 𝑦𝑦𝑦𝑦 ≥ 𝑦𝑦𝑦𝑦 ′, let Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 ′) ≡ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦) − 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 ′) be agent 𝑖𝑖𝑖𝑖’s additional
(marginal) benefit from the increase from 𝑦𝑦𝑦𝑦 ′ to 𝑦𝑦𝑦𝑦 units.

We assume that the project has a “public-good nature”; that is, every agent benefits from the same
project level, irrespective of his contribution. However, we do not always assume that the project is
a public “good.” We allow the case in which a higher project level may harm some agents, while it
benefits others. In the subsequent sections, we impose additional conditions on 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 , which determine
the project character. Note that in our model, agents who benefit from a higher project level, if any,
want to free-ride others’ contribution. That is, the free-rider problem does matter.

We identify an economy by a list [𝑁𝑁𝑁𝑁, (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 , 𝑐𝑐𝑐𝑐]. For each economy, the existence of the Pareto-
efficient level for a project is trivial sinceY is a finite set. For analytical simplicity, we assume that𝑦𝑦𝑦𝑦∗ ∈
Y is a unique efficient project level, where𝑦𝑦𝑦𝑦∗ is positive;7 that is, {𝑦𝑦𝑦𝑦∗} = argmax𝑦𝑦𝑦𝑦∈Y

∑
𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦)−𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦).8

We also assume that for all coalitions 𝐷𝐷𝐷𝐷 ⊆ 𝑁𝑁𝑁𝑁 , argmax𝑦𝑦𝑦𝑦∈Y
∑

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦) −𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦) is a singleton. For all 𝐷𝐷𝐷𝐷 ⊆
𝑁𝑁𝑁𝑁 , let𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷) ∈ Y be a stand-alone level of the project for𝐷𝐷𝐷𝐷 such that {𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷)} = argmax𝑦𝑦𝑦𝑦∈Y

∑
𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦)−

𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦). We do not assume that𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷) is positive for all𝐷𝐷𝐷𝐷 ⊊ 𝑁𝑁𝑁𝑁 . Let𝑌𝑌𝑌𝑌max ≡ max𝐷𝐷𝐷𝐷⊆𝑁𝑁𝑁𝑁 𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷). The assumption
of a unique stand-alone level for each coalition is used only in Section 4.

7The subsequent analysis is applicable to the trivial case of 𝑦𝑦𝑦𝑦∗ = 0.
8The notion of efficiency in this study is based on transferable resources. That is, if we denote 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 and 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 as the initial

endowment of the private good and the consumption of it for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 , respectively, then the resource constraint is
∑
𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 ≥∑

𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦). This constraint is rewritten as
∑
𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦) because 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖 −𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 . If we further assume that𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖

is sufficiently large for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 , then the allocation is efficient if and only if it maximizes the total surplus. Regarding this,
see, for example, Silvestre (2012).
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We immediately obtain Lemma 1 from the uniqueness of the efficient level 𝑦𝑦𝑦𝑦∗.

Lemma 1 For all 𝑦𝑦𝑦𝑦 ∈ Y,
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦) > Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦) if 𝑦𝑦𝑦𝑦∗ > 𝑦𝑦𝑦𝑦 and
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦∗) < Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦∗) if
𝑦𝑦𝑦𝑦∗ < 𝑦𝑦𝑦𝑦.

Proof. By the efficiency and the uniqueness of 𝑦𝑦𝑦𝑦∗,
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗) − 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗) >
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦) − 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦) for all
𝑦𝑦𝑦𝑦 ∈ Y\{𝑦𝑦𝑦𝑦∗}, which implies the conditions in the statement. ■

We focus on the undertaking of a public project through a unit-by-unit contribution mechanism,
which is the same as the mechanism of Brânzei et al. (2005). In this mechanism, each agent 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁

simultaneously chooses a vector of marginal contributions to each one-unit increase of the project.
Let 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖 ≡ (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦

𝑖𝑖𝑖𝑖 )𝑦𝑦𝑦𝑦∈Y\{0} ∈ R𝑦𝑦𝑦𝑦+ be a typical vector of marginal contributions chosen by agent 𝑖𝑖𝑖𝑖 , in which
𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 ∈ R+ is a marginal contribution from 𝑖𝑖𝑖𝑖 to the marginal production from 𝑦𝑦𝑦𝑦−1 to 𝑦𝑦𝑦𝑦 units. The project
level is determined as follows: 𝑦𝑦𝑦𝑦 ∈ Y\{0} units of the project are undertaken at 𝜎𝜎𝜎𝜎 = (𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 if and only
if (i) for all units of 𝑦𝑦𝑦𝑦, which is less than or equal to 𝑦𝑦𝑦𝑦, the sum of contributions to the 𝑦𝑦𝑦𝑦-th unit of the
project,

∑
𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝜎𝜎𝜎𝜎

�̂�𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 , covers the marginal cost of that unit, Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1), and (ii) the sum of contributions

to 𝑦𝑦𝑦𝑦 + 1-th unit,
∑

𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦+1
𝑖𝑖𝑖𝑖 , falls short of the marginal cost Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦). If the marginal cost of the first

unit is not covered by the sum of contributions to that unit, then the project level is zero. Formally, for
each 𝜎𝜎𝜎𝜎 = (𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ∈ R𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦+ , let 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) be the public project level at 𝜎𝜎𝜎𝜎 such that

𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) ≡ max

{
𝑦𝑦𝑦𝑦 ∈ Y

����
∑
𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁

𝜎𝜎𝜎𝜎
�̂�𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 ≥ Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) for all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦𝑦𝑦

}
, (2)

where we define 𝜎𝜎𝜎𝜎0
𝑖𝑖𝑖𝑖 ≡ 0 for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 and 𝑐𝑐𝑐𝑐 (0) −𝑐𝑐𝑐𝑐 (0−1) ≡ 0 for consistency. For all 𝜎𝜎𝜎𝜎 ∈ R𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦+ , each agent

𝑖𝑖𝑖𝑖 pays
∑

𝑦𝑦𝑦𝑦∈Y\{0} 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 . In this mechanism, the marginal contribution to some unit is never refunded even

though the project is not undertaken at that unit. However, as we will see later, the contribution is
never wasted at every Nash equilibrium.

The mechanism accompanied with (𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 constitutes a strategic-form game Γ = [𝑁𝑁𝑁𝑁, (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ,𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ],
in which 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ≡ R𝑦𝑦𝑦𝑦+ is the set of strategies for 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 and 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 :

∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 → R is agent 𝑖𝑖𝑖𝑖’s payoff function,

depending on strategies such that 𝜎𝜎𝜎𝜎 ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 ↦−→ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎) ≡ 𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎),

∑
𝑦𝑦𝑦𝑦∈Y\{0} 𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 ) ∈ R. Hereafter, we

call Γ a unit-by-unit contribution game. The unit-by-unit contribution game is a complete information
game.

Bagnoli and Lipman (1989) introduce a multi-stage unit-by-unit contribution mechanism. It starts
with the decision on whether to provide the first unit of the project. In the first stage, the agents
contribute to the first unit of the project. If the sum of contributions to the first unit covers the marginal
cost for that unit, the first unit is provided, and the agents go to the second stage. Otherwise, the first
unit is not provided, and the mechanism ends. If the agents go to the second stage, it is decided in the
same way whether or not to provide a second unit. The second unit is provided, and the agents go to
the third stage if and only if the sum of contributions to the second unit covers the marginal cost for
that unit. This continues till the sum of contributions to a one-unit increase falls short of the marginal
cost for that increase. We consider the mechanisms of Brânzei et al. (2005) and Bagnoli and Lipman
(1989) as essentially the same because the decision on a one-unit increase of the public good is based on
the relationship between the marginal contribution and the marginal cost for that unit. In this paper,
we analyze the mechanism based on a simultaneous game.
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We introduce equilibrium concepts for the unit-by-unit contribution game. Our analysis is re-
stricted to pure strategies. The Nash equilibrium is defined as usual.

For each 𝐷𝐷𝐷𝐷 ⊆ 𝑁𝑁𝑁𝑁 , denote a strategy profile for 𝐷𝐷𝐷𝐷 by 𝜎𝜎𝜎𝜎𝐷𝐷𝐷𝐷 ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 . We simply write 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 = 𝜎𝜎𝜎𝜎 . A

strong Nash equilibrium (Aumann, 1959) is a Nash equilibrium that is stable against all possible coalition
deviations.

Definition 1 Strategy profile 𝜎𝜎𝜎𝜎 ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 is a strong Nash equilibrium of Γ if there is no 𝐷𝐷𝐷𝐷 ⊆ 𝑁𝑁𝑁𝑁 and

𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷 ∈ ∏

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 such that 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎) < 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷 , 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 ) for all 𝑗𝑗𝑗𝑗 ∈ 𝐷𝐷𝐷𝐷 .

A coalition-proof Nash equilibrium (Bernheim et al., 1987) is also an equilibrium based on stability
against coordinated strategies. Unlike the strong Nash equilibrium, the coalition-proof Nash equilib-
rium is limited to “self-enforcing” coalitional deviations. This equilibrium is based on the notion of a
restricted game. For all 𝐷𝐷𝐷𝐷 ⊊ 𝑁𝑁𝑁𝑁 and all 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 ∈ ∏

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 , Γ |𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 is a restricted game of Γ at (𝐷𝐷𝐷𝐷, 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 )
in which the agents in 𝐷𝐷𝐷𝐷 plays Γ, taking as given that the other agents choose 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 ; that is, Γ |𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 is
a list [𝐷𝐷𝐷𝐷, (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 , �̃�𝑉𝑉𝑉𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝐷𝐷𝐷𝐷 ] in which 𝐷𝐷𝐷𝐷 is a set of players for each 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 , 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = R

𝑦𝑦𝑦𝑦
+ is 𝑖𝑖𝑖𝑖’s strategy set, and �̃�𝑉𝑉𝑉𝑖𝑖𝑖𝑖 is

the payoff function of 𝑖𝑖𝑖𝑖 such that �̃�𝜎𝜎𝜎𝐷𝐷𝐷𝐷 ∈ ∏
𝑖𝑖𝑖𝑖∈𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 ↦−→ �̃�𝑉𝑉𝑉𝑖𝑖𝑖𝑖 (�̃�𝜎𝜎𝜎𝐷𝐷𝐷𝐷 ) ≡ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 (�̃�𝜎𝜎𝜎𝐷𝐷𝐷𝐷 , 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 ) ∈ R.

Definition 2 A coalition-proof Nash equilibrium 𝜎𝜎𝜎𝜎 ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 is defined inductively with respect

to the number of agents 𝑛𝑛𝑛𝑛 ≥ 1. Suppose that 𝑛𝑛𝑛𝑛 = 1. Then, 𝜎𝜎𝜎𝜎 ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 is a coalition-proof Nash

equilibrium of Γ if 𝜎𝜎𝜎𝜎 is a Nash equilibrium of Γ.
Suppose that 𝑛𝑛𝑛𝑛 ≥ 2 and suppose that a coalition-proof Nash equilibrium has been defined for all

games with fewer than 𝑛𝑛𝑛𝑛 agents. 𝜎𝜎𝜎𝜎 ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 is self-enforcing in Γ if it is a coalition-proof Nash

equilibrium of Γ |𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 for all nonempty 𝐷𝐷𝐷𝐷 ⊊ 𝑁𝑁𝑁𝑁 . 𝜎𝜎𝜎𝜎 ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 is a coalition-proof Nash equilibrium of

Γ if it is self-enforcing in Γ and there is no other self-enforcing strategies 𝜎𝜎𝜎𝜎 ′ ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 in Γ such that

𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎) < 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎 ′) for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 .

The self-enforcing property of coalition-proof Nash equilibria restricts possible coalition devia-
tions, and hence the set of strong Nash equilibria is always a subset of the set of coalition-proof Nash
equilibria.

Since we assume that agents have quasi-linear utility functions, it would be appropriate to consider
coalition deviations through monetary transfers. Consider a situation in which a coalition 𝐷𝐷𝐷𝐷 ⊆ 𝑁𝑁𝑁𝑁

deviates and each of its members freely sends transfers to other members. Let 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 and 𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖 ∈ R be
a net transfer to agent 𝑖𝑖𝑖𝑖 from the others: 𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖 is equal to the transfers 𝑖𝑖𝑖𝑖 sends minus the transfers she
receives. There is no outside transfer resource; that is,

∑
𝑖𝑖𝑖𝑖∈𝐷𝐷𝐷𝐷 𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖 = 0. Based on these kinds of transfers,

we redefine the strong Nash and coalition-proof Nash equilibria.

Definition 3 Strategy profile 𝜎𝜎𝜎𝜎 ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 is a strong Nash equilibrium with transfers of Γ if there is

no 𝐷𝐷𝐷𝐷 ⊆ 𝑁𝑁𝑁𝑁 , 𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷 ∈ ∏

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 and (𝜏𝜏𝜏𝜏 𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 ∈ R |𝐷𝐷𝐷𝐷 | such that
∑

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 𝜏𝜏𝜏𝜏 𝑗𝑗𝑗𝑗 = 0 and 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎) < 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷 , 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 ) + 𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖 for

all 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 .

Note that 𝜎𝜎𝜎𝜎 is a strong Nash equilibrium with transfers if and only if there is no 𝐷𝐷𝐷𝐷 ⊆ 𝑁𝑁𝑁𝑁 and
𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷 ∈ ∏

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 such that
∑

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎) <
∑

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷 , 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 ). That is, no coalition can deviate from a

strong Nash equilibrium with transfers so as to increase the sum of payoffs of its members.
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Definition 4 A coalition-proof Nash equilibrium with transfers 𝜎𝜎𝜎𝜎 ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 is defined inductively

with respect to the number of agents 𝑛𝑛𝑛𝑛 ≥ 1. Suppose that 𝑛𝑛𝑛𝑛 = 1. Then, 𝜎𝜎𝜎𝜎 ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 is a coalition-proof

Nash equilibrium with transfers of Γ if 𝜎𝜎𝜎𝜎 is a Nash equilibrium of Γ.
Suppose that 𝑛𝑛𝑛𝑛 ≥ 2 and suppose that a coalition-proof Nash equilibrium with transfers has been

defined for all games with fewer than 𝑛𝑛𝑛𝑛 agents. 𝜎𝜎𝜎𝜎 ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 is self-enforcing with transfers in Γ if it

is a coalition-proof Nash equilibrium with transfers of Γ |𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 for all nonempty 𝐷𝐷𝐷𝐷 ⊊ 𝑁𝑁𝑁𝑁 . 𝜎𝜎𝜎𝜎 ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗

is a coalition-proof Nash equilibrium with transfers of Γ if it is self-enforcing with transfers in Γ and
there are no other self-enforcing strategies with transfers 𝜎𝜎𝜎𝜎 ′ ∈ ∏

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 in Γ and (𝜏𝜏𝜏𝜏 𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 ∈ R𝑛𝑛𝑛𝑛 such
that

∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝜏𝜏𝜏𝜏 𝑗𝑗𝑗𝑗 = 0 and 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎) < 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎 ′

𝐷𝐷𝐷𝐷 , 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 ) + 𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖 for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 .

Note that 𝜎𝜎𝜎𝜎 ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 is a coalition-proof Nash equilibrium with transfers of Γ if and only if it is

self-enforcing with transfers in Γ and there are no self-enforcing strategies with transfers 𝜎𝜎𝜎𝜎 ′ ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗

such that
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎) <
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎 ′).
Regarding the strong Nash equilibrium, since monetary transfers increase the possibility of coali-

tion deviations, every strong Nash equilibrium with transfers is generally a strong Nash equilibrium,
but the converse is not necessarily true. However, the same does not apply to a coalition-proof Nash
equilibrium. The two sets of coalition-proof Nash equilibria may be disjointed. See Appendix C.

Remark 1 The remarks on the above equilibria are in order. (i) Every strong Nash equilibrium with
transfers is a strong Nash equilibrium, which in turn is a coalition-proof Nash equilibrium. (ii) Every
strong Nash equilibrium with transfers is a coalition-proof Nash equilibrium with transfers. (iii) In Γ,
no coalition-proof Nash equilibrium is Pareto-dominated by other coalition-proof Nash equilibria. (iv)
There are never two distinct coalition-proof Nash equilibria with transfers that take different values
of the sum of the payoffs to agents.

3 Results: Nonharmful public projects

We consider an economy in which agents undertake a project that is nonharmful for all agents in the
sense that the increase in project level does not harm any agent. This economy is formally defined as
a list [𝑁𝑁𝑁𝑁, (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 , 𝑐𝑐𝑐𝑐] in which 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 is weakly increasing in the project level for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 : for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 and
all 𝑦𝑦𝑦𝑦 ∈ Y,

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦) ≥ 0 (3)

and 𝑐𝑐𝑐𝑐 is weakly convex and increasing in level (see (1)). We refer to this economy as e1.

Theorem 1 For an economy e1 = [𝑁𝑁𝑁𝑁, (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 , 𝑐𝑐𝑐𝑐], in the unit-by-unit contribution game, (i) there is no
Nash equilibrium at which the project is undertaken over level 𝑦𝑦𝑦𝑦∗ and (ii) the set of Nash equilibria at
which the project is undertaken at level 𝑦𝑦𝑦𝑦∗ coincides with the sets of strong Nash equilibria with and
without transfers and the sets of coalition-proof Nash equilibria with and without transfers, and all
sets are nonempty.

The proof is provided in the appendix. The project levels at Nash equilibria may bemultiple, but at most
𝑦𝑦𝑦𝑦∗.9 Since strong Nash equilibria and coalition-proof Nash equilibria single out Nash equilibria with

9We can make an example in which the unit-by-unit contribution game may have Nash equilibria at which the project is
undertaken below 𝑦𝑦𝑦𝑦∗. For example, consider a case of Y = {0, 1, 2}, 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦) = 10𝑦𝑦𝑦𝑦 for all 𝑦𝑦𝑦𝑦 ∈ Y, 𝑁𝑁𝑁𝑁 = {1, 2}, and 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (1) = 7 and
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efficient project implementation levels, coordination possibilities modeled through those equilibria
successfully lead to efficient allocation. In this sense, given coordination possibilities, the unit-by-unit
contribution mechanism is successful in the implementation of nonharmful projects.

Studies on the provision of integer-unit public goods have examined several distinct benefit func-
tions. Bagnoli and Lipmann (1989) and Nishimura and Shinohara (2013) assume that agents’ benefit
functions are strictly increasing in the public good level. Moreover, Bagnoli and Lipmann (1989) impose
strict concavity on the benefit functions. Brânzei et al. (2005) and Shinohara (2014) assume that every
agent 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 has a discontinuous benefit function such that there is a threshold level of the public good
𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 and a positive constant value 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 such that 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦) = 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 if 𝑦𝑦𝑦𝑦 ≥ 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 and 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦) = 0 otherwise. Obviously,
all of the benefit functions in the literature are examples of weakly increasing benefit functions. The
existence of Nash equilibria with efficient projects, shown by Bagnoli and Lipmann (1989) and Brânzei
et al. (2005), is extensible to the case in which agents have weakly increasing benefit functions.

By Theorem 1, we observe that the Nash equilibrium with an efficient project is robust to several
types of coalitional deviations. This robustness property is stronger than the finding by Brânzei et
al. (2005). This is because while Brânzei et al. (2005) examine a strong Nash equilibrium (without
transfers), we examine four refined Nash equilibria, including a strong Nash equilibrium.10

4 Results: Harmful public projects

To what extent are the desirable properties of the unit-by-unit contribution mechanism, shown in
Theorem 1, satisfied when implementing a public project that is sometimes harmful to some agents?
We consider an economy in which at least one agent has a benefit function that is not weakly in-
creasing, that is, an economy [𝑁𝑁𝑁𝑁𝑁𝑁 (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑁𝑁 𝑐𝑐𝑐𝑐] in which there exist 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 and 𝑦𝑦𝑦𝑦 𝑗𝑗𝑗𝑗 ∈ Y\{𝑦𝑦𝑦𝑦} such that
Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 𝑗𝑗𝑗𝑗 + 1𝑁𝑁 𝑦𝑦𝑦𝑦 𝑗𝑗𝑗𝑗 ) < 0 and 𝑐𝑐𝑐𝑐 satisfies (1). In this economy, some agents such as agent 𝑗𝑗𝑗𝑗 above do not
always benefit from an increase in the project level.

Firstly, we provide examples to show that in this economy, the unit-by-unit contribution mecha-
nism may not achieve an efficient project level at some refined Nash equilibria.

Example 1 Let Y = {0𝑁𝑁 1𝑁𝑁 2}. Let 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦) = 10𝑦𝑦𝑦𝑦 for all 𝑦𝑦𝑦𝑦 ∈ Y. Let 𝑁𝑁𝑁𝑁 = {1𝑁𝑁 2}. Suppose 𝑢𝑢𝑢𝑢1(1) = 4, 𝑢𝑢𝑢𝑢1(2) =
1, 𝑢𝑢𝑢𝑢2(1) = 12, and 𝑢𝑢𝑢𝑢2(2) = 23. Then, 𝑦𝑦𝑦𝑦∗ = 1 and 𝑌𝑌𝑌𝑌max = 2. Firstly, we show that no Nash equilibrium
supports the efficient undertaking of the project. Take 𝜎𝜎𝜎𝜎 = (𝜎𝜎𝜎𝜎1

1 𝑁𝑁 𝜎𝜎𝜎𝜎
2
1 ;𝜎𝜎𝜎𝜎

1
2 𝑁𝑁 𝜎𝜎𝜎𝜎

2
2 ) such that 𝜎𝜎𝜎𝜎1

1 + 𝜎𝜎𝜎𝜎1
2 = 10 and

𝜎𝜎𝜎𝜎2
1 +𝜎𝜎𝜎𝜎2

2 < 10. In this 𝜎𝜎𝜎𝜎 , 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) = 1. However, it cannot be a Nash equilibrium because if agent 2 increases
his marginal contribution to the second unit from 𝜎𝜎𝜎𝜎2

2 to 10 − 𝜎𝜎𝜎𝜎2
1 , then he is made better off (note that

Δ𝑢𝑢𝑢𝑢2(2𝑁𝑁 1) > Δ𝑐𝑐𝑐𝑐 (2𝑁𝑁 1) ≥ Δ𝑐𝑐𝑐𝑐 (2𝑁𝑁 1) − 𝜎𝜎𝜎𝜎2
1 in this example). We can easily verify that 𝜎𝜎𝜎𝜎 ′ ∈ ∏

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 such
that 𝜎𝜎𝜎𝜎 ′

1 = (0𝑁𝑁 0) and 𝜎𝜎𝜎𝜎 ′
2 = (10𝑁𝑁 10) is a unique Nash equilibrium that is also coalition-proof. Secondly,

we can verify that no strong Nash equilibrium exists since 𝜎𝜎𝜎𝜎 ′ is not a strong Nash equilibrium with or
without transfers (consider a deviation by 𝑁𝑁𝑁𝑁 from 𝜎𝜎𝜎𝜎 ′ to �̃�𝜎𝜎𝜎 ∈ ∏

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 such that (�̃�𝜎𝜎𝜎1
1 𝑁𝑁 �̃�𝜎𝜎𝜎

2
1 ) = (2𝑁𝑁 0) and

(�̃�𝜎𝜎𝜎1
2 𝑁𝑁 �̃�𝜎𝜎𝜎

2
2 ) = (8𝑁𝑁 0)).

𝑢𝑢𝑢𝑢2 (2) = 13 for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 .
10In regard to the result in Brânzei et al. (2005), it would be important to discuss whether a Nash equilibrium with an

efficient project achieves the core of some cooperative game. This is because Brânzei et al. (2005) show that utility allocations
attained at strong Nash equilibria are the core of a cooperative game. We can show that if agents have weakly increasing
benefit functions, all utility allocations at the strong Nash equilibria belong to the core of a cooperative game. The proof is
available upon request.
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Example 2 Let Y = {0, 1, 2} and 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦) = 10𝑦𝑦𝑦𝑦. Let 𝑁𝑁𝑁𝑁 = {1, 2, 3, 4}. Suppose that 𝑢𝑢𝑢𝑢1(1) = 7.5 and
𝑢𝑢𝑢𝑢1(2) = 0 and that 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (1) = 6 and 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (2) = 12 for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 \{1}. Then, 𝑦𝑦𝑦𝑦∗ = 𝑌𝑌𝑌𝑌max = 2. In this example,
we show that there is no strong Nash equilibrium with transfers at which the project is undertaken at
level 𝑦𝑦𝑦𝑦∗, while there exists a strong Nash equilibrium.

We can find a strategy profile that is a strong Nash equilibrium. For example, consider 𝜎𝜎𝜎𝜎 ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗

such that (𝜎𝜎𝜎𝜎1
1 , 𝜎𝜎𝜎𝜎

1
1 ) = (0, 0), (𝜎𝜎𝜎𝜎1

2 , 𝜎𝜎𝜎𝜎
1
2 ) = (10, 0), and (𝜎𝜎𝜎𝜎1

𝑖𝑖𝑖𝑖 , 𝜎𝜎𝜎𝜎
1
𝑖𝑖𝑖𝑖 ) = (0, 5) for 𝑖𝑖𝑖𝑖 = 3, 4, which is a strong Nash

equilibrium.
Secondly, we show that there exists no strong Nash equilibrium with transfers. Let 𝜎𝜎𝜎𝜎 be a Nash

equilibrium such that𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) = 2. Since𝑢𝑢𝑢𝑢1(2) = 0 and 𝜎𝜎𝜎𝜎 is a Nash equilibrium, we obtain (𝜎𝜎𝜎𝜎1
1 , 𝜎𝜎𝜎𝜎

2
1 ) = (0, 0).

We further obtain
∑

𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 \{1} 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 = Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) for all 𝑦𝑦𝑦𝑦 ∈ Y\{0} (see Lemma A1 in Appendix A). At

𝜎𝜎𝜎𝜎 , 𝑉𝑉𝑉𝑉1(𝜎𝜎𝜎𝜎) = 0 and 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎) = 12 − 𝜎𝜎𝜎𝜎1
𝑖𝑖𝑖𝑖 − 𝜎𝜎𝜎𝜎2

𝑖𝑖𝑖𝑖 for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 \{1}. Now, we consider a coalition {1, 𝑗𝑗𝑗𝑗} such
that 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 \{1} and 𝜎𝜎𝜎𝜎2

𝑗𝑗𝑗𝑗 > 0. Suppose that this coalition deviates from 𝜎𝜎𝜎𝜎 to �̃�𝜎𝜎𝜎{1, 𝑗𝑗𝑗𝑗 } such that �̃�𝜎𝜎𝜎1 = 𝜎𝜎𝜎𝜎1

and �̃�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 = (𝜎𝜎𝜎𝜎1
𝑗𝑗𝑗𝑗 , 0). Then, 𝑦𝑦𝑦𝑦 (�̃�𝜎𝜎𝜎{1, 𝑗𝑗𝑗𝑗 }, 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \{1, 𝑗𝑗𝑗𝑗 })=1 and 𝑉𝑉𝑉𝑉1(�̃�𝜎𝜎𝜎{1, 𝑗𝑗𝑗𝑗 }, 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \{1, 𝑗𝑗𝑗𝑗 }) +𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (�̃�𝜎𝜎𝜎{1, 𝑗𝑗𝑗𝑗 }, 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \{1, 𝑗𝑗𝑗𝑗 }) = 7.5 + 6 − 𝜎𝜎𝜎𝜎1

𝑗𝑗𝑗𝑗 .
Finally,

𝑉𝑉𝑉𝑉1(�̃�𝜎𝜎𝜎{1, 𝑗𝑗𝑗𝑗 }, 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \{1, 𝑗𝑗𝑗𝑗 }) +𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (�̃�𝜎𝜎𝜎{1, 𝑗𝑗𝑗𝑗 }, 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \{1, 𝑗𝑗𝑗𝑗 }) −
(
𝑉𝑉𝑉𝑉1(𝜎𝜎𝜎𝜎) +𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎)

)
= 1.5 + 𝜎𝜎𝜎𝜎2

𝑗𝑗𝑗𝑗 > 0.

Thus, no strong Nash equilibrium with transfers exists.

In these examples, there is only one agent whose benefit function is not weakly increasing. Nev-
ertheless, the equilibria of the unit-by-unit contribution game have properties that are very different
from those in Theorem 1. Firstly, a Nash equilibrium may not support the efficient project 𝑦𝑦𝑦𝑦∗ (see
Example 1). Secondly, strong Nash equilibria with and without transfers may not exist. Moreover, no
strong Nash equilibrium with transfers may exist in either 𝑌𝑌𝑌𝑌max = 𝑦𝑦𝑦𝑦∗ or 𝑌𝑌𝑌𝑌max > 𝑦𝑦𝑦𝑦∗. Thirdly, although
coalition-proof Nash equilibria with and without transfers exist in these examples, they do not always
support an efficient project.

By Examples 1 and 2, the unit-by-unit contribution mechanism does not necessarily achieve an
efficient project at refined Nash equilibria, unlike in the implementation of nonharmful projects. In
particular, it is impossible for the mechanism to achieve efficiency through a strong Nash equilibrium,
since it may not exist. We now focus on the coalition-proof Nash equilibria and examine to what
extent the unit-by-unit contribution mechanism achieves an efficient project level in an economy with
harmful projects.

The condition that at least one agent does not have a weakly increasing benefit function seems
very weak, and hence we need to consider many economies for the analysis. For tractability, we focus
on a subclass of such economies, in which agents have weakly concave benefit functions. Formally, we
consider an economy e2 = [𝑁𝑁𝑁𝑁, (𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 , 𝑐𝑐𝑐𝑐] in which some agents do not have weakly increasing benefit
functions; that is, there exist 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 and 𝑦𝑦𝑦𝑦 𝑗𝑗𝑗𝑗 ∈ Y\{𝑦𝑦𝑦𝑦} such that

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 𝑗𝑗𝑗𝑗 + 1, 𝑦𝑦𝑦𝑦 𝑗𝑗𝑗𝑗 ) < 0, (4)

every agent has weakly concave benefit functions: for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 and all 𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 ′ ∈ Y such that 𝑦𝑦𝑦𝑦 > 𝑦𝑦𝑦𝑦 > 𝑦𝑦𝑦𝑦 ′,

Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦) ≤ Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 ′ + 1, 𝑦𝑦𝑦𝑦 ′), (5)

and 𝑐𝑐𝑐𝑐 is weakly convex and increasing (see (1)).
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Note that there may be agents whose benefit functions are weakly increasing.

Lemma 2 In economy e2, for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 , if 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 satisfies (4), then there exists 𝑝𝑝𝑝𝑝 ( 𝑗𝑗𝑗𝑗) ∈ Y\{𝑦𝑦𝑦𝑦} such that

Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦) ≥ 0 for all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 < 𝑝𝑝𝑝𝑝 ( 𝑗𝑗𝑗𝑗)
and Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦) < 0 for all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≥ 𝑝𝑝𝑝𝑝 ( 𝑗𝑗𝑗𝑗).

(6)

Proof. Suppose that 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 satisfies (4). By a weak concavity of 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 , Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦) < 0 for all 𝑦𝑦𝑦𝑦 ∈ Y\{𝑦𝑦𝑦𝑦}
such that𝑦𝑦𝑦𝑦 ≥ 𝑦𝑦𝑦𝑦 𝑗𝑗𝑗𝑗 . Thus, if there exists𝑦𝑦𝑦𝑦 ′ ∈ Y\{0, 𝑦𝑦𝑦𝑦} such that Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 ′, 𝑦𝑦𝑦𝑦 ′−1) ≥ 0 and Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 ′+1, 𝑦𝑦𝑦𝑦 ′) < 0,
then we can define 𝑦𝑦𝑦𝑦 ′ ≡ 𝑝𝑝𝑝𝑝 ( 𝑗𝑗𝑗𝑗). Otherwise, 𝑝𝑝𝑝𝑝 ( 𝑗𝑗𝑗𝑗) ≡ 0. ■

Our interpretation is that 𝑝𝑝𝑝𝑝 ( 𝑗𝑗𝑗𝑗) is the level of the public project that peaks agent 𝑗𝑗𝑗𝑗 ’s benefit from
the project. In this economy, every agent whose benefit function is not weakly increasing has a peaked
benefit function. For convenience, we also define this peak level of the project for all agents whose
benefit function is weakly increasing as follows: 𝑝𝑝𝑝𝑝 (𝑖𝑖𝑖𝑖) ≡ 𝑦𝑦𝑦𝑦 for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 such that Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦) ≥ 0 for
all 𝑦𝑦𝑦𝑦 ∈ Y\{𝑦𝑦𝑦𝑦}. We further introduce some notations for the analysis. For all 𝑦𝑦𝑦𝑦 ∈ Y, let 𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦 ≡ {𝑖𝑖𝑖𝑖 ∈
𝑁𝑁𝑁𝑁 | 𝑝𝑝𝑝𝑝 (𝑖𝑖𝑖𝑖) ≥ 𝑦𝑦𝑦𝑦}: the set of agents whose peak level is not less than 𝑦𝑦𝑦𝑦. Then, for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 and 𝑦𝑦𝑦𝑦 ∈ Y\{0},
𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦 if and only if Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) ≥ 0.

In this economy, although 𝑦𝑦𝑦𝑦∗ is a unique efficient level of the project, 𝑌𝑌𝑌𝑌max may not be equal to 𝑦𝑦𝑦𝑦∗.
We provide a necessary and sufficient condition under which 𝑌𝑌𝑌𝑌max = 𝑦𝑦𝑦𝑦∗ in Lemma 3, which would be
useful for subsequent analyses.

Lemma 3 In economy e2, 𝑌𝑌𝑌𝑌max = 𝑦𝑦𝑦𝑦∗ if and only if

∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗ + 1, 𝑦𝑦𝑦𝑦∗) < Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗ + 1, 𝑦𝑦𝑦𝑦∗). (7)

Proof. (⇐) By the definition of 𝑌𝑌𝑌𝑌max, 𝑦𝑦𝑦𝑦∗ ≤ 𝑌𝑌𝑌𝑌max. Suppose, to the contrary, that 𝑦𝑦𝑦𝑦∗ + 1 ≤ 𝑌𝑌𝑌𝑌max. Let
𝐷𝐷𝐷𝐷 ⊆ 𝑁𝑁𝑁𝑁 be such that 𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷) = 𝑌𝑌𝑌𝑌max. Then,

∑
𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷), 𝑦𝑦𝑦𝑦∗) > Δ𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷), 𝑦𝑦𝑦𝑦∗).

Note that
∑

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗ + 1, 𝑦𝑦𝑦𝑦∗) ≤ ∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗ + 1, 𝑦𝑦𝑦𝑦∗). This inequality, together with (1), (5),

and (7), implies that for all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≥ 𝑦𝑦𝑦𝑦∗ + 1,

∑
𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦) ≤
∑
𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗ + 1, 𝑦𝑦𝑦𝑦∗) < Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗ + 1, 𝑦𝑦𝑦𝑦∗) ≤ Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦).

Finally, we obtain
∑

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷), 𝑦𝑦𝑦𝑦∗) < Δ𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷), 𝑦𝑦𝑦𝑦∗), which is a contradiction.
(⇒) 𝑌𝑌𝑌𝑌max = 𝑦𝑦𝑦𝑦∗ implies that𝑌𝑌𝑌𝑌 (𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1) ≤ 𝑦𝑦𝑦𝑦∗. Since𝑌𝑌𝑌𝑌 (𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1) is the uniquemaximizer of

∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦)−

𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦), ∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌 (𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1) + 1, 𝑌𝑌𝑌𝑌 (𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1)) < Δ𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌 (𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1) + 1, 𝑌𝑌𝑌𝑌 (𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1)) .

By (1), (5), and 𝑌𝑌𝑌𝑌 (𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1) ≤ 𝑦𝑦𝑦𝑦∗,

∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗ + 1, 𝑦𝑦𝑦𝑦∗) ≤
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌 (𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1) + 1, 𝑌𝑌𝑌𝑌 (𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1))

and
Δ𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌 (𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1) + 1, 𝑌𝑌𝑌𝑌 (𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗+1)) ≤ Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗ + 1, 𝑦𝑦𝑦𝑦∗).
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Thus, we obtain (7). ■

Lemma 4 is a preparation for subsequent analyses.

Lemma 4 In economy e2,
∑

𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗ Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) > Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) for all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦∗.

Proof. By Lemma 1,
∑

𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦∗𝑦𝑦 𝑦𝑦𝑦𝑦∗ − 1) > Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗𝑦𝑦 𝑦𝑦𝑦𝑦∗ − 1). Since
∑

𝑖𝑖𝑖𝑖∉𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗ Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦∗𝑦𝑦 𝑦𝑦𝑦𝑦∗ − 1) < 0 (if
𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗ ≠ ∅),

∑
𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁

Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦∗𝑦𝑦 𝑦𝑦𝑦𝑦∗ − 1) =
∑

𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗
Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦∗𝑦𝑦 𝑦𝑦𝑦𝑦∗ − 1) +

∑

𝑖𝑖𝑖𝑖∉𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗
Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦∗𝑦𝑦 𝑦𝑦𝑦𝑦∗ − 1) ≤

∑

𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗
Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦∗𝑦𝑦 𝑦𝑦𝑦𝑦∗ − 1) .

Thus,
∑

𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗ Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦∗𝑦𝑦 𝑦𝑦𝑦𝑦∗ − 1) > Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗𝑦𝑦 𝑦𝑦𝑦𝑦∗ − 1). By (1) and (5), we obtain the condition in the statement
of this lemma. ■

4.1 Nash equilibria and Pareto efficiency

As Examples 1 and 2 show, the unit-by-unit contribution gamemay ormay not have a Nash equilibrium
that undertakes the project efficiently in economy e2. Hence, we investigate under which conditions
the unit-by-unit contribution game has such a Nash equilibrium in e2.

By Lemma 4, we can construct a strategy profile 𝜎𝜎𝜎𝜎∗ ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 such that:

If 𝑦𝑦𝑦𝑦∗ + 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦𝑦𝑦 then 𝜎𝜎𝜎𝜎
∗𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 = 0 for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 .

If 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦∗𝑦𝑦 then 𝜎𝜎𝜎𝜎
∗𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 = 0 for all 𝑖𝑖𝑖𝑖 ∉ 𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗𝑦𝑦 0 ≤ 𝜎𝜎𝜎𝜎

∗𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 < Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗𝑦𝑦

and
∑

𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗
𝜎𝜎𝜎𝜎
∗𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 = Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1).

(8)

At 𝜎𝜎𝜎𝜎∗, the project is undertaken efficiently. However, as we can easily check, while it is a Nash equi-
librium in Example 2, it is not in Example 1. Hence, some conditions are needed for it to be a Nash
equilibrium. Profile 𝜎𝜎𝜎𝜎∗ plays an important role in establishing a necessary and sufficient condition for
a Nash equilibrium to achieve an efficient project level.

Proposition 1 In economy e2, the unit-by-unit contribution game has a Nash equilibrium at which the

project is undertaken efficiently if and only if

Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦∗ + 1𝑦𝑦 𝑦𝑦𝑦𝑦∗) ≤ Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗ + 1𝑦𝑦 𝑦𝑦𝑦𝑦∗) for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 . (9)

The proof is provided in the appendix. Whether a Nash equilibrium with an efficient project level
exists depends on the relationship between the marginal benefits of each agent and marginal cost for
the 𝑦𝑦𝑦𝑦∗ + 1-th unit of the project. We can intuitively understand (9). If (9) holds, no agent gains from a
one-unit increase in the project level from 𝑦𝑦𝑦𝑦∗ units. Hence, without (9), no Nash equilibrium supports
an efficient project level.

Corollary 1 establishes a sufficient condition under which the unit-by-unit contribution game has
a Nash equilibrium with an efficient project.

Corollary 1 In economy e2, if 𝑌𝑌𝑌𝑌max = 𝑦𝑦𝑦𝑦∗, then there is a Nash equilibrium at which the project is
undertaken at the level 𝑦𝑦𝑦𝑦∗.
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Proof. 𝑌𝑌𝑌𝑌max = 𝑦𝑦𝑦𝑦∗ implies (7), which in turn implies (9). Thus, by Proposition 1, a Nash equilibrium
exists such that the public project is provided efficiently. ■

It is easily seen that 𝑌𝑌𝑌𝑌max = 𝑦𝑦𝑦𝑦∗ is not a necessary condition for a Nash equilibrium to support an
efficient project.

As Example 1 shows, in economy e2, theremay be aNash equilibrium that supports over-implementation
of the project in the unit-by-unit contribution game. Proposition 2 provides a necessary and sufficient
condition for an economy under which the project is implemented over the efficient level at a Nash
equilibrium.

Proposition 2 In economy e2, there exists a Nash equilibrium at which the project is undertaken over

the efficient level 𝑦𝑦𝑦𝑦∗ if and only if 𝑌𝑌𝑌𝑌max > 𝑦𝑦𝑦𝑦∗.

The proof is provided in the appendix. We can intuitively interpret 𝑌𝑌𝑌𝑌max > 𝑦𝑦𝑦𝑦∗. 𝑌𝑌𝑌𝑌max > 𝑦𝑦𝑦𝑦∗ if and
only if 𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷) > 𝑦𝑦𝑦𝑦∗ for some 𝐷𝐷𝐷𝐷 ⊊ 𝑁𝑁𝑁𝑁 . Coalition 𝐷𝐷𝐷𝐷 can undertake the public project at the level 𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷)
by itself since

∑
𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) ≥ Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) for all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷). Thus, there

exists a proper subgroup of 𝑁𝑁𝑁𝑁 that can undertake the project over 𝑦𝑦𝑦𝑦∗. In conclusion, whether over-
implementation of the project is supported at a Nash equilibrium depends on the existence of such a
subgroup.

Theorem 2 summarizes the results in subsection 4.1, which is derived directly from Corollary 1 and
Proposition 2.

Theorem 2 In economy e2, (i) if 𝑌𝑌𝑌𝑌max = 𝑦𝑦𝑦𝑦∗, then there exists a Nash equilibrium that supports the

efficient project, but there is no Nash equilibrium at which the project is undertaken over the efficient level.

(ii) If 𝑌𝑌𝑌𝑌max > 𝑦𝑦𝑦𝑦∗, there exists a Nash equilibrium with over-implementation of the project, and there may

be a Nash equilibrium that supports an efficient project.

Remarks about Theorem 2 are in order. Firstly, in the case of 𝑌𝑌𝑌𝑌max = 𝑦𝑦𝑦𝑦∗, there may be a Nash
equilibrium that supports underprovision of the public project. Secondly, in the case of 𝑌𝑌𝑌𝑌max > 𝑦𝑦𝑦𝑦∗,
there may be a Nash equilibrium with efficient project implementation. Thus, as in economy e1, the
unit-by-unit contribution mechanism may face a multiplicity of Nash equilibria that support different
project levels in economy e2.

4.2 Coalition-proof Nash equilibria and Pareto efficiency

We examine which Nash equilibria are coalition-proof both with and without transfers in the unit-by-
unit contribution game in economy e2. Lemma 5 is a preliminary for the analysis.

Lemma 5 There exists �̃�𝑀𝑀𝑀 ⊆ 𝑁𝑁𝑁𝑁 that satisfies

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) > 0 for all 𝑗𝑗𝑗𝑗 ∈ �̃�𝑀𝑀𝑀 and for all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑌𝑌𝑌𝑌max𝑦𝑦 (10)

and
∑

𝑗𝑗𝑗𝑗 ∈�̃�𝑀𝑀𝑀

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) > Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) for all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑌𝑌𝑌𝑌max. (11)

The proof is provided in the appendix. Let M ⊆ 𝑁𝑁𝑁𝑁 be the “largest” set that satisfies (10) and (11)
in the sense that no other sets satisfy these conditions or includeM. By these conditions, we can find
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𝜎𝜎𝜎𝜎 ∈ R𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦+ such that

If 𝑌𝑌𝑌𝑌max + 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦𝑦𝑦 then 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 = 0 for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 𝑁𝑁

If 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑌𝑌𝑌𝑌max𝑦𝑦 then 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 = 0 for all 𝑖𝑖𝑖𝑖 ∉ M𝑦𝑦 0 < 𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 < Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) for all 𝑖𝑖𝑖𝑖 ∈ M𝑦𝑦

and
∑
𝑗𝑗𝑗𝑗 ∈M

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1)𝑁𝑁

(12)

By (12), for all 𝑗𝑗𝑗𝑗 ∈ M,

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max𝑦𝑦 𝑦𝑦𝑦𝑦 − 1) >
𝑌𝑌𝑌𝑌max∑
𝑦𝑦𝑦𝑦=�̂�𝑦𝑦𝑦

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 for all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑌𝑌𝑌𝑌max𝑁𝑁 (13)

In the proof of Proposition 3, provided in the appendix, we show that 𝜎𝜎𝜎𝜎 in (12) is a coalition-proof Nash
equilibrium with and without transfers.

Proposition 3 In economy e2, the unit-by-unit contribution game has coalition-proof Nash equilibria

with and without transfers at which the project is undertaken at the level 𝑌𝑌𝑌𝑌max.

The proof is provided in the appendix. Although the unit-by-unit contribution game may not have
strong Nash equilibria with or without transfers, it always has coalition-proof Nash equilibria with
and without transfers. The self-enforcing property of coalition deviations guarantees the existence of
coalition-proof Nash equilibria. It would be useful to again consider Example 1 in order to intuitively
understand how this property works. Recall that 𝑦𝑦𝑦𝑦∗ = 1 and 𝑌𝑌𝑌𝑌max = 2 in this example. Recall also that
𝜎𝜎𝜎𝜎 ′ = (𝜎𝜎𝜎𝜎 ′1

1 𝑦𝑦 𝜎𝜎𝜎𝜎
′2
1 ;𝜎𝜎𝜎𝜎

′1
2 𝑦𝑦 𝜎𝜎𝜎𝜎

′2
2 ) = (0𝑦𝑦 0; 10𝑦𝑦 10) is the Nash equilibrium, but it is not a strong Nash equilibrium

because 𝑁𝑁𝑁𝑁 has a profitable deviation �̃�𝜎𝜎𝜎 = (�̃�𝜎𝜎𝜎1
1 𝑦𝑦 �̃�𝜎𝜎𝜎

2
1 ; �̃�𝜎𝜎𝜎

1
2 𝑦𝑦 �̃�𝜎𝜎𝜎

2
2 ) = (2𝑦𝑦 0; 8𝑦𝑦 0) from 𝜎𝜎𝜎𝜎 ′. By this deviation, the

project level declines from 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎 ′) = 2 to 𝑦𝑦𝑦𝑦 (�̃�𝜎𝜎𝜎) = 1. However, this deviation is not self-enforcing because
agent 2 is willing to get the project level back to two units after the deviation. This is because agent
2’s marginal benefit from the second unit is greater than the marginal cost for the unit. When the
self-enforcing property matters, agents 1 and 2 do not agree with the first joint deviation to decrease
the project level. In general, in the unit-by-unit contribution game in economy e2, the deviation to
decrease the project level from 𝑌𝑌𝑌𝑌max is not self-enforcing (see the proof of Proposition 3 for details).

The next proposition shows that no coalition-proof Nash equilibrium supports the public project
under 𝑌𝑌𝑌𝑌max.

Proposition 4 Suppose that there exists a Nash equilibrium �̂�𝜎𝜎𝜎 ∈ R𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦+ such that 𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎) < 𝑌𝑌𝑌𝑌max in the

unit-by-unit contribution game in economy e2. Then, �̂�𝜎𝜎𝜎 is not a coalition-proof Nash equilibrium with or

without transfers.

The proof is provided in the appendix. As Proposition 3 shows, there is a coalition-proof Nash
equilibrium at which the project is undertaken at the level 𝑌𝑌𝑌𝑌max. This, together with (13), implies that
agents inM have a self-enforcing deviation from �̂�𝜎𝜎𝜎 in a way that increases the project level from 𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎)
to 𝑌𝑌𝑌𝑌max and makes all of them better off (see the proof of Proposition 4 for details).

Theorem 3 summarizes under what condition a coalition-proof Nash equilibrium achieves the ef-
ficient project level.
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Theorem 3 In economy e2, (i) the project is undertaken at the level 𝑦𝑦𝑦𝑦∗ at all coalition-proof Nash equi-

libria with and without transfers if 𝑌𝑌𝑌𝑌max = 𝑦𝑦𝑦𝑦∗. (ii) The project is undertaken over the efficient level at all

coalition-proof Nash equilibria if 𝑌𝑌𝑌𝑌max > 𝑦𝑦𝑦𝑦∗.

The proof is provided in the appendix. When the project is harmful for some agents, a Nash equi-
librium itself may not support an efficient project. In some cases, multiple Nash equilibria support
both efficient implementation and over-implementation of the project. In these cases, no Nash equi-
librium with an efficient project is robust to coalition deviations. No strong Nash equilibria may exist.
Coalition-proof Nash equilibria with and without transfers always exist, but they single out the Nash
equilibrium with over-implementation of the project. These results differ greatly from those for non-
harmful project implementation.

4.3 A modified mechanism

In the discussion after Proposition 2, we mention that 𝑌𝑌𝑌𝑌max > 𝑦𝑦𝑦𝑦∗ means the existence of a group that
can over-implement the project. If such a group exists, agents outsider this group cannot prevent the
over-implementation of the project because they can announce only nonnegative contributions for
each one-unit increase. Now, we modify the unit-by-unit contribution mechanism in such a way that
agents can announce negative numbers for each one-unit increase. Let 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ≡ R𝑦𝑦𝑦𝑦 for each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 . For
each 𝜎𝜎𝜎𝜎 ∈ ∏

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 , the level of the project 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) is defined in the same way as (2). For each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁

and (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 )𝑦𝑦𝑦𝑦∈Y\{0} ∈ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 , (𝑡𝑡𝑡𝑡𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 ))𝑦𝑦𝑦𝑦∈Y\{0} is defined as a vector of 𝑖𝑖𝑖𝑖’s actual contributions for each one-

unit increase such that for each 𝑦𝑦𝑦𝑦 ∈ 𝑌𝑌𝑌𝑌\{0}, 𝑡𝑡𝑡𝑡𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 ) = 𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 if 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦

𝑖𝑖𝑖𝑖 ≥ 0 and 𝑡𝑡𝑡𝑡
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 ) takes a positive value

otherwise. For each 𝜎𝜎𝜎𝜎 ∈ ∏
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 and each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 , 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎) = 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)) −

∑
𝑦𝑦𝑦𝑦∈𝑌𝑌𝑌𝑌\{0} 𝑡𝑡𝑡𝑡

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 ). Note that by

this modification, agents can prevent any one-unit increase if they announce sufficiently small negative
numbers.

We can intuitively understand this modified mechanism in which for each one-unit increase, each
agent is asked to announce a “willingness to pay” for carrying out the increase (a positive number) or
that for preventing it (a negative number). Whether the project increases by one unit depends upon
the sum of the announced willingness-to-pay. For any one-unit increase, if agents announce a positive
value for that increase, they make the same payment as their announcement. Otherwise, their actual
payment for that increase can be any positive value. There are some examples concerning how to set
the actual contributions for negative numbers. For example, consider that 𝑡𝑡𝑡𝑡𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 ) = |𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦

𝑖𝑖𝑖𝑖 | when 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 < 0.

In this example, agents who announce a negative number for some one-unit increase pay the absolute
value of their willingness to pay for preventing that increase. We can consider another example in
which for each 𝑦𝑦𝑦𝑦 ∈ Y\{0}, 𝑡𝑡𝑡𝑡𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 ) = 𝜀𝜀𝜀𝜀 for some positive constant 𝜀𝜀𝜀𝜀 when 𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 < 0. We can intuitively

understand that 𝜀𝜀𝜀𝜀 is a “fine” for announcing a negative number. It is enough that 𝜀𝜀𝜀𝜀 is very close to zero.

Proposition 5 In some economy e2, no Nash equilibrium supports the efficient implementation of the

public project in the modified unit-by-unit contribution mechanism.

The proof is provided in the appendix.
In this mechanism, if agents announce negative values for some one-unit increase, then their pay-

ment for that increase can take any positive value. In this sense, this modified mechanism seems to
constitute a reasonably large class of modifications of the unit-by-unit contribution mechanisms. By

37

Ryusuke Shinohara



Proposition 5, we confirm that introducing negative contributions to the unit-by-unit contribution
mechanism is not sufficient for the efficient undertaking of the project. We also confirm that if agents
announce negative numbers for some one-unit increase, then they are subsidized to some extent, but
not asked to contribute.

5 Conclusion

The unit-by-unit contribution mechanism seems suitable for the implementation of integer-unit public
projects and applicable, to some extent, to public project initiatives in the real world. Hence, it is
important that we understand how this mechanism works in the implementation of various public
projects. However, this issue has received only limited attention. Our aim is to examine to what extent
this mechanism achieves Pareto efficiency in the implementation of public projects. We consider not
only a project that is nonharmful for all agents but also one that is not.

Our results are as follows. The mechanism works well in an economy in which the project is
nonharmful for all agents. In this economy, the mechanism achieves an efficient project level only at
a strong Nash equilibrium and a coalition-proof Nash equilibrium with and without transfers. In this
sense, given various coalitional behaviors, the mechanism achieves efficiency. On the other hand, in
other economies, the mechanism does not always work well. When the project is harmful for some
agents, the unit-by-unit contribution mechanism does not necessarily have a Nash equilibrium with
an efficient project. Even if the mechanism has such a Nash equilibrium, it is not necessarily supported
at a strong Nash equilibrium or a coalition-proof Nash equilibrium. We introduce a reasonable class of
modified unit-by-unit contribution mechanisms, but no mechanism in this class achieves an efficient
public project in Nash equilibria. We conclude that the unit-by-unit contribution mechanism should be
used only for public projects that benefit all agents. In order to achieve an efficient project level that is
harmful for some, we need to consider another class of modified unit-by-unit contribution mechanisms
or construct a completely new mechanism to undertake public projects. This is left for future research.

Appendix A: Preliminary results

In Appendix A, we examine a unit-by-unit contribution game without (1), (3), or (5). Instead of these
conditions, we impose other conditions on the benefit and cost functions in each of subsequent lemmas.
The results obtained in this appendix are applied to prove the results in the main text.

Let Γ0 = [N , (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ,V𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈N] be a unit-by-unit contribution game where N is the set of agents, 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 is
𝑖𝑖𝑖𝑖’s set of strategies such that 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = R𝑦𝑦𝑦𝑦+ , and V𝑖𝑖𝑖𝑖 :

∏
𝑗𝑗𝑗𝑗 ∈N 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 → R is 𝑖𝑖𝑖𝑖’s payoff function such that 𝜎𝜎𝜎𝜎N ∈∏

𝑗𝑗𝑗𝑗 ∈N 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 ↦−→ V𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎N) ≡ 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)) −
∑𝑦𝑦𝑦𝑦

𝑦𝑦𝑦𝑦=1 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 ∈ R where 𝑦𝑦𝑦𝑦 :

∏
𝑗𝑗𝑗𝑗 ∈N 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 → Y is a mapping assigning a

level of the public project to each strategy profile, which is defined in the same way as (2) in the main
text. We assume that for all𝑦𝑦𝑦𝑦 ∈ Y, 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦) ≥ 0 and for all𝑦𝑦𝑦𝑦 ∈ Y\{0}, Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦−1) ≡ max{0, 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦)−𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦−1)}.
However, we do not impose any of (1), (3), and (5) on Γ0.

A.1 Results of Nash equilibria of Γ0

LemmaA1 shows that the contributions at everyNash equilibrium satisfy the budget balance condition.
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Lemma A1 Suppose that 𝜎𝜎𝜎𝜎N ∈ R |N |𝑦𝑦𝑦𝑦
+ is a Nash equilibrium of Γ0. Then,

∑
𝑗𝑗𝑗𝑗 ∈N

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) for all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N) if 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N) ≥ 1. (14)

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = 0 for all 𝑗𝑗𝑗𝑗 ∈ N and all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≥ 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N) + 1 if 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N) + 1 ≤ 𝑦𝑦𝑦𝑦. (15)

Proof. Proof of (14). Since the project is undertaken at the level 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N) at 𝜎𝜎𝜎𝜎N ,
∑

𝑗𝑗𝑗𝑗 ∈N 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 ≥ Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1)

for all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎). Suppose, to the contrary, that there exists 𝑦𝑦𝑦𝑦 ∈ Y such that
1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) and∑𝑗𝑗𝑗𝑗 ∈N 𝜎𝜎𝜎𝜎

�̃�𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 > Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦−1). Then, clearly, there exists 𝑖𝑖𝑖𝑖 ∈ N such that𝜎𝜎𝜎𝜎 �̃�𝑦𝑦𝑦

𝑖𝑖𝑖𝑖 > 0. Even if this

agent 𝑖𝑖𝑖𝑖 decreases his contribution to 𝑦𝑦𝑦𝑦-th unit from 𝜎𝜎𝜎𝜎
�̃�𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 to 𝜎𝜎𝜎𝜎 ′�̃�𝑦𝑦𝑦

𝑖𝑖𝑖𝑖 = max
{
0𝑦𝑦 Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) −∑

𝑗𝑗𝑗𝑗 ∈N\{𝑖𝑖𝑖𝑖 } 𝜎𝜎𝜎𝜎
�̃�𝑦𝑦𝑦
𝑗𝑗𝑗𝑗

}
𝑦𝑦

he can still enjoy the project at the level 𝑦𝑦𝑦𝑦 (�̃�𝜎𝜎𝜎N) while his total contribution decreases. Hence, he is
made better off by this deviation, which contradicts the supposition that 𝜎𝜎𝜎𝜎N is a Nash equilibrium.

Proof of (15). Suppose that there exist 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 and𝑦𝑦𝑦𝑦 ∈ Y such that𝑦𝑦𝑦𝑦 ≥ 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)+1 and 𝜎𝜎𝜎𝜎 �̃�𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 > 0. If agent

𝑗𝑗𝑗𝑗 switches from 𝜎𝜎𝜎𝜎
�̃�𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 to 𝜎𝜎𝜎𝜎 ′�̃�𝑦𝑦𝑦

𝑗𝑗𝑗𝑗 = 0, the level of the project does not change. Hence, by this switch, agent 𝑗𝑗𝑗𝑗
can still enjoy the project at the level 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N) as well as reduce his contribution, which contradicts the
supposition that 𝜎𝜎𝜎𝜎N is a Nash equilibrium. ■

Lemma A2 proves that at every Nash equilibrium, under some condition, marginal contributions
do not exceed the marginal benefit from the increase of the public project.

Lemma A2 Suppose that 𝜎𝜎𝜎𝜎N ∈ R |N |𝑦𝑦𝑦𝑦
+ is a Nash equilibrium of Γ0. Suppose also that Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) ≥ 0

for all 𝑗𝑗𝑗𝑗 ∈ N and all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N). Then,

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)𝑦𝑦 𝑦𝑦𝑦𝑦 ′) ≥
𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)∑

𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1
𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 for all 𝑗𝑗𝑗𝑗 ∈ N and for all 𝑦𝑦𝑦𝑦 ′ ∈ Y such that 𝑦𝑦𝑦𝑦 ′ ≤ 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N) − 1. (16)

Proof. The proof is obtained by induction. Let 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 . Suppose, to the contrary, that

Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)𝑦𝑦 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N) − 1) < 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)
𝑖𝑖𝑖𝑖 .

Then, 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)
𝑖𝑖𝑖𝑖 > 0. If 𝑖𝑖𝑖𝑖 reduces his contribution to the 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)-th unit to zero, the level of the project de-

creases to𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)−1 by (14) of LemmaA1 and his payoff increases by 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)
𝑖𝑖𝑖𝑖 −Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)𝑦𝑦 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N) − 1) >

0, which contradicts the supposition that 𝜎𝜎𝜎𝜎N is a Nash equilibrium.
Let𝑦𝑦𝑦𝑦 ′ ∈ Y be such that 1 ≤ 𝑦𝑦𝑦𝑦 ′ ≤ 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)−1. Suppose, as an induction hypothesis, thatΔ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)𝑦𝑦 𝑦𝑦𝑦𝑦 ′) ≥∑𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)

𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 . Then, we show that Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)𝑦𝑦 𝑦𝑦𝑦𝑦 ′ − 1) ≥ ∑𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)

𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′ 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 . Suppose, to the contrary, that

Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)𝑦𝑦 𝑦𝑦𝑦𝑦 ′ − 1) < ∑𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′ 𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 . By this inequality,

Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)𝑦𝑦 𝑦𝑦𝑦𝑦 ′) −
𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)∑
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 + Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 ′𝑦𝑦 𝑦𝑦𝑦𝑦 ′ − 1) < 𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦′

𝑖𝑖𝑖𝑖 .

By this condition and the induction hypothesis, Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 ′𝑦𝑦 𝑦𝑦𝑦𝑦 ′ − 1) < 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦′

𝑖𝑖𝑖𝑖 . By Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 ′𝑦𝑦 𝑦𝑦𝑦𝑦 ′ − 1) ≥ 0, we obtain
𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦′

𝑖𝑖𝑖𝑖 > 0. Let �̃�𝜎𝜎𝜎𝑖𝑖𝑖𝑖 ∈ R𝑦𝑦𝑦𝑦+ be 𝑖𝑖𝑖𝑖’s deviation strategy from 𝜎𝜎𝜎𝜎 such that �̃�𝜎𝜎𝜎𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 = 𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 if 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦 ′ − 1 and �̃�𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 = 0

otherwise. Since 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦′

𝑖𝑖𝑖𝑖 > 0, the project is undertaken at the level𝑦𝑦𝑦𝑦 ′−1 at (�̃�𝜎𝜎𝜎𝑖𝑖𝑖𝑖 𝑦𝑦 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \{𝑖𝑖𝑖𝑖 }) andV𝑖𝑖𝑖𝑖 (�̃�𝜎𝜎𝜎𝑖𝑖𝑖𝑖 𝑦𝑦 𝜎𝜎𝜎𝜎N\{𝑖𝑖𝑖𝑖 }) =
𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 ′ − 1) −∑𝑦𝑦𝑦𝑦′−1

𝑦𝑦𝑦𝑦=1 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 . We obtainV𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎N) −V𝑖𝑖𝑖𝑖 (�̃�𝜎𝜎𝜎𝑖𝑖𝑖𝑖 𝑦𝑦 𝜎𝜎𝜎𝜎N\{𝑖𝑖𝑖𝑖 }) = Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)𝑦𝑦 𝑦𝑦𝑦𝑦 ′ − 1) −∑𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)

𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′ 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 < 0, which

contradicts the supposition that 𝜎𝜎𝜎𝜎N is a Nash equilibrium. ■
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Lemma A3 provides a sufficient condition of a Nash equilibrium in Γ0.

Lemma A3 Let 𝜎𝜎𝜎𝜎N ∈ R |N |𝑦𝑦𝑦𝑦
+ . Suppose that for all 𝑗𝑗𝑗𝑗 ∈ N ,

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) ≥ 0 for all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N) (17)

and Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)) ≤ Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)) for all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≥ 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N) + 1. (18)

Suppose also that 𝜎𝜎𝜎𝜎N satisfies (14)–(16). Then, 𝜎𝜎𝜎𝜎N is a Nash equilibrium of Γ0.

Proof. Let 𝑗𝑗𝑗𝑗 ∈ N and let �̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 ∈ R𝑦𝑦𝑦𝑦+ be a deviation strategy of 𝑗𝑗𝑗𝑗 from 𝜎𝜎𝜎𝜎 . Firstly, we consider the case
of 𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 }) ≥ 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) + 1. Since by this deviation, the level of the project increases from 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) to
𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 }) and 𝜎𝜎𝜎𝜎N satisfies (15), then 𝑗𝑗𝑗𝑗 contributes at least Δ𝑐𝑐𝑐𝑐

(
𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 })𝑦𝑦 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)

)
to this increase.

Moreover, by (14), 𝑗𝑗𝑗𝑗 cannot reduce his contributions from the first to 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)-th unit to undertake the
project at the level 𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 }). Thus,

𝑦𝑦𝑦𝑦∑
𝑦𝑦𝑦𝑦=1

�̂�𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 ≥

𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)∑
𝑦𝑦𝑦𝑦=1

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 + Δ𝑐𝑐𝑐𝑐

(
𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 })𝑦𝑦 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)

)
. (19)

By (18), Δ𝑐𝑐𝑐𝑐
(
𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 })𝑦𝑦 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)

)
≥ Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗

(
𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 })𝑦𝑦 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)

)
. Then, by (19),

𝑦𝑦𝑦𝑦∑
𝑦𝑦𝑦𝑦=1

�̂�𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 ≥

𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)∑
𝑦𝑦𝑦𝑦=1

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 + Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗

(
𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 })𝑦𝑦 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)

)

or, equivalently,

𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)) −
𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)∑
𝑦𝑦𝑦𝑦=1

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 ≥ 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗

(
𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 })

)
−

𝑦𝑦𝑦𝑦∑
𝑦𝑦𝑦𝑦=1

�̂�𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 .

In this condition, the left-hand side is the payoff to 𝑗𝑗𝑗𝑗 before the deviation and the right-hand side is
the one after the deviation. Hence, 𝑗𝑗𝑗𝑗 is not made better off by this deviation.

Secondly, we consider the case of 𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 }) ≤ 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) − 1. Since 𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 }) units of the project
are undertaken,

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 ≤ �̂�𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 for all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 }) and 𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 ,𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 })+1
𝑗𝑗𝑗𝑗 > �̂�𝜎𝜎𝜎

𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 ,𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 })+1
𝑗𝑗𝑗𝑗 .

Themaximal payoff to agent 𝑗𝑗𝑗𝑗 by this deviation is𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗
(
𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 })

)
−∑𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 ,𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 })

𝑦𝑦𝑦𝑦=1 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 , which is obtained

if �̂�𝜎𝜎𝜎𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = 𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 for all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 }) and �̂�𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = 0 for all 𝑦𝑦𝑦𝑦 ∈ Y such that

𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 }) + 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦. The payoff to agent 𝑗𝑗𝑗𝑗 before this deviation is 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)) −
∑𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)

𝑦𝑦𝑦𝑦=1 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 , while

that after the deviation is at most 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗
(
𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 })

)
−∑𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 ,𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 })

𝑦𝑦𝑦𝑦=1 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 . Clearly,

𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)) −
𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)∑
𝑦𝑦𝑦𝑦=1

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 ≥ 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗

(
𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 })

)
−

𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 ,𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 })∑
𝑦𝑦𝑦𝑦=1

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗

because Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗
(
𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)𝑦𝑦 𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 𝑦𝑦 𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 })

)
≥ ∑𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N)

𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 ,𝜎𝜎𝜎𝜎N\{ 𝑗𝑗𝑗𝑗 })+1 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 by (16). Thus, agent 𝑗𝑗𝑗𝑗 is not made better off

by this deviation. ■
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A.2 Results of strong Nash equilibria of 𝚪𝚪𝚪𝚪0

Similarly to the main text, let 𝑌𝑌𝑌𝑌 (D) ∈ argmax𝑦𝑦𝑦𝑦∈Y
∑

𝑗𝑗𝑗𝑗 ∈D 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦) − 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦) for all D ⊆ N and let 𝑌𝑌𝑌𝑌max ≡
maxD⊆N 𝑌𝑌𝑌𝑌 (D).

Lemma A4 Let 𝜎𝜎𝜎𝜎N ∈ R |N |𝑦𝑦𝑦𝑦
+ be a Nash equilibrium such that 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N) = 𝑌𝑌𝑌𝑌max. Suppose that

∑
𝑗𝑗𝑗𝑗 ∈E

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦𝑦𝑦𝑌𝑌𝑌𝑌max) ≤ Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦𝑦𝑦𝑌𝑌𝑌𝑌max) for all E ⊆ N and all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≥ 𝑌𝑌𝑌𝑌max + 1. (20)

If a coalition D ⊆ N has deviation strategies 𝜎𝜎𝜎𝜎 ′
D ∈ R |D |𝑦𝑦𝑦𝑦

+ such that 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎 ′
D𝑦𝑦 𝜎𝜎𝜎𝜎N\D) ≥ 𝑌𝑌𝑌𝑌max + 1, then∑

𝑗𝑗𝑗𝑗 ∈D V𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎N) ≥
∑

𝑗𝑗𝑗𝑗 ∈D V𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎 ′
D𝑦𝑦 𝜎𝜎𝜎𝜎N\D).

Proof. Let 𝑦𝑦𝑦𝑦 ′ ≡ 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎 ′
D𝑦𝑦 𝜎𝜎𝜎𝜎N\D). Suppose, to the contrary, that

∑
𝑗𝑗𝑗𝑗 ∈D V𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎 ′

D𝑦𝑦 𝜎𝜎𝜎𝜎N\D) > ∑
𝑗𝑗𝑗𝑗 ∈D V𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎N).

By this inequality,

∑
𝑗𝑗𝑗𝑗 ∈D

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 ′𝑦𝑦 𝑌𝑌𝑌𝑌max) >
∑
𝑗𝑗𝑗𝑗 ∈D

𝑌𝑌𝑌𝑌max∑
𝑦𝑦𝑦𝑦=1

(𝜎𝜎𝜎𝜎 ′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 − 𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 ) +

∑
𝑗𝑗𝑗𝑗 ∈D

𝑦𝑦𝑦𝑦∑
𝑦𝑦𝑦𝑦=𝑌𝑌𝑌𝑌max+1

𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 .

Since the project is undertaken at the level 𝑦𝑦𝑦𝑦 ′ and 𝑌𝑌𝑌𝑌max < 𝑦𝑦𝑦𝑦 ′, we obtain
∑

𝑗𝑗𝑗𝑗 ∈D
∑𝑌𝑌𝑌𝑌max

𝑦𝑦𝑦𝑦=1 (𝜎𝜎𝜎𝜎 ′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 − 𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 ) ≥ 0;

otherwise, 𝑦𝑦𝑦𝑦 ′ units are never provided. Consequently,

∑
𝑗𝑗𝑗𝑗 ∈D

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 ′𝑦𝑦 𝑌𝑌𝑌𝑌max) >
∑
𝑗𝑗𝑗𝑗 ∈D

𝑦𝑦𝑦𝑦∑
𝑦𝑦𝑦𝑦=𝑌𝑌𝑌𝑌max+1

𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 𝑦𝑦 (21)

On the other hand, by (20), we obtain
∑

𝑗𝑗𝑗𝑗 ∈D Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 ′𝑦𝑦 𝑌𝑌𝑌𝑌max) ≤ Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 ′𝑦𝑦 𝑌𝑌𝑌𝑌max). Since the project is
undertaken at the level 𝑦𝑦𝑦𝑦 ′ by this deviation and 𝑦𝑦𝑦𝑦 ′ ≤ 𝑦𝑦𝑦𝑦,

Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 ′𝑦𝑦 𝑌𝑌𝑌𝑌max) ≤
∑
𝑗𝑗𝑗𝑗 ∈D

𝑦𝑦𝑦𝑦′∑
𝑦𝑦𝑦𝑦=𝑌𝑌𝑌𝑌max+1

𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 ≤

∑
𝑗𝑗𝑗𝑗 ∈D

𝑦𝑦𝑦𝑦∑
𝑦𝑦𝑦𝑦=𝑌𝑌𝑌𝑌max+1

𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 .

Thus,
∑
𝑗𝑗𝑗𝑗 ∈D

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 ′𝑦𝑦 𝑌𝑌𝑌𝑌max) ≤
∑
𝑗𝑗𝑗𝑗 ∈D

𝑦𝑦𝑦𝑦∑
𝑦𝑦𝑦𝑦=𝑌𝑌𝑌𝑌max+1

𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 𝑦𝑦

which contradicts (21). ■

Lemma A5 Suppose that (20) and

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) ≥ 0 for all 𝑗𝑗𝑗𝑗 ∈ N and all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑌𝑌𝑌𝑌max. (22)

Then, every Nash equilibrium at which the project is undertaken at the level 𝑌𝑌𝑌𝑌max is a strong Nash
equilibrium with transfers of Γ0.

Proof. Let 𝜎𝜎𝜎𝜎N ∈ R |N |𝑦𝑦𝑦𝑦
+ be a Nash equilibrium such that 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎N) = 𝑌𝑌𝑌𝑌max. By (22) and Lemmas A1 and
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A2,

∑
𝑗𝑗𝑗𝑗 ∈N

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) for all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑌𝑌𝑌𝑌max𝑦𝑦

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = 0 for all 𝑗𝑗𝑗𝑗 ∈ N and all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≥ 𝑦𝑦𝑦𝑦 (𝑌𝑌𝑌𝑌max) + 1𝑦𝑦 and (23)

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max𝑦𝑦 𝑦𝑦𝑦𝑦) ≥
𝑌𝑌𝑌𝑌max∑
𝑦𝑦𝑦𝑦=�̂�𝑦𝑦𝑦+1

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 for all 𝑗𝑗𝑗𝑗 ∈ N and for all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≤ 𝑌𝑌𝑌𝑌max − 1. (24)

Suppose, to the contrary, that there exists a coalition D ⊆ N and 𝜎𝜎𝜎𝜎 ′
D ∈ R |D |𝑦𝑦𝑦𝑦

+ such that

∑
𝑗𝑗𝑗𝑗 ∈D

V𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎N) <
∑
𝑗𝑗𝑗𝑗 ∈D

V𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎 ′
D𝑦𝑦 𝜎𝜎𝜎𝜎N\D). (25)

Let 𝑦𝑦𝑦𝑦 ′ ∈ Y be the level of the public project that deviates by D: 𝑦𝑦𝑦𝑦 ′ ≡ 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎 ′
D𝑦𝑦 𝜎𝜎𝜎𝜎N\D). By Lemma A4,

if 𝑦𝑦𝑦𝑦 ′ ≥ 𝑌𝑌𝑌𝑌max + 1, then it is impossible that
∑

𝑗𝑗𝑗𝑗 ∈D V𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎N) <
∑

𝑗𝑗𝑗𝑗 ∈D V𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎 ′
D𝑦𝑦 𝜎𝜎𝜎𝜎N\D). It is trivial that

if 𝑦𝑦𝑦𝑦 ′ = 𝑌𝑌𝑌𝑌max, then the deviation by D is not improving. Finally, we need to consider the case of
𝑦𝑦𝑦𝑦 ′ ≤ 𝑌𝑌𝑌𝑌max − 1. By (25),

∑
𝑗𝑗𝑗𝑗 ∈D

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max𝑦𝑦 𝑦𝑦𝑦𝑦 ′) <
∑
𝑗𝑗𝑗𝑗 ∈D

𝑦𝑦𝑦𝑦∑
𝑦𝑦𝑦𝑦=1

(𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 − 𝜎𝜎𝜎𝜎

′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 ).

Since the deviation by D attains 𝑦𝑦𝑦𝑦 ′,
∑

𝑗𝑗𝑗𝑗 ∈D
∑𝑦𝑦𝑦𝑦′

𝑦𝑦𝑦𝑦=1 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 ≤ ∑

𝑗𝑗𝑗𝑗 ∈D
∑𝑦𝑦𝑦𝑦′

𝑦𝑦𝑦𝑦=1 𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 . By this inequality,

∑
𝑗𝑗𝑗𝑗 ∈D

𝑦𝑦𝑦𝑦∑
𝑦𝑦𝑦𝑦=1

(𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 − 𝜎𝜎𝜎𝜎

′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 ) =

∑
𝑗𝑗𝑗𝑗 ∈D

𝑦𝑦𝑦𝑦′∑
𝑦𝑦𝑦𝑦=1

(𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 − 𝜎𝜎𝜎𝜎

′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 ) +

∑
𝑗𝑗𝑗𝑗 ∈D

𝑦𝑦𝑦𝑦∑
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1

(𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 − 𝜎𝜎𝜎𝜎

′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 )

≤
∑
𝑗𝑗𝑗𝑗 ∈D

𝑦𝑦𝑦𝑦∑
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1

(𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 − 𝜎𝜎𝜎𝜎

′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 ) ≤

∑
𝑗𝑗𝑗𝑗 ∈D

𝑦𝑦𝑦𝑦∑
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 =

∑
𝑗𝑗𝑗𝑗 ∈D

𝑌𝑌𝑌𝑌max∑
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 .

The last equality follows from (23). Combining these two conditions yields

∑
𝑗𝑗𝑗𝑗 ∈D

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max𝑦𝑦 𝑦𝑦𝑦𝑦 ′) <
∑
𝑗𝑗𝑗𝑗 ∈D

𝑌𝑌𝑌𝑌max∑
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 .

However, by (24),
∑

𝑗𝑗𝑗𝑗 ∈D Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max𝑦𝑦 𝑦𝑦𝑦𝑦 ′) ≥ ∑
𝑗𝑗𝑗𝑗 ∈D

∑𝑌𝑌𝑌𝑌max

𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 , which is a contradiction.

In conclusion, no coalition can jointly deviate from 𝜎𝜎𝜎𝜎N in a way that improves the sum of payoffs
of its members. ■

Appendix B: Proofs of the results in the main text

Proof of Theorem 1. Consider a unit-by-unit contribution game Γ = [𝑁𝑁𝑁𝑁𝑦𝑦 (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 𝑦𝑦𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖∈𝑁𝑁𝑁𝑁 ] in economy e1.
We consider a case in which N = 𝑁𝑁𝑁𝑁 and V𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 for all 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 and apply Lemmas A1, A3, A4, and A5
to Γ. Claims 1 and 2 are basic properties of economy e1.

Claim 1 In economy e1, 𝑌𝑌𝑌𝑌max = 𝑦𝑦𝑦𝑦∗.

Proof of Claim 1. By the definition of 𝑌𝑌𝑌𝑌max, 𝑦𝑦𝑦𝑦∗ ≤ 𝑌𝑌𝑌𝑌max. Suppose that 𝑦𝑦𝑦𝑦∗ < 𝑌𝑌𝑌𝑌max. Since {𝑦𝑦𝑦𝑦∗} =

argmax𝑦𝑦𝑦𝑦∈Y
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦) − 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦), then ∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max𝑦𝑦 𝑦𝑦𝑦𝑦∗) < Δ𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌max𝑦𝑦 𝑦𝑦𝑦𝑦∗). Then, there exists 𝐷𝐷𝐷𝐷 ⊊ 𝑁𝑁𝑁𝑁
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such that 𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷) = 𝑌𝑌𝑌𝑌max and
∑

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max, 𝑦𝑦𝑦𝑦∗) ≥ Δ𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌max, 𝑦𝑦𝑦𝑦∗). In conclusion,

∑
𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max, 𝑦𝑦𝑦𝑦∗) ≥ Δ𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌max, 𝑦𝑦𝑦𝑦∗) >
∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max, 𝑦𝑦𝑦𝑦∗).

However, it is impossible that
∑

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max, 𝑦𝑦𝑦𝑦∗) > ∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max, 𝑦𝑦𝑦𝑦∗) because𝐷𝐷𝐷𝐷 ⊊ 𝑁𝑁𝑁𝑁 andΔ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦−

1) ≥ 0 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 and all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≥ 1. Hence, 𝑌𝑌𝑌𝑌max = 𝑦𝑦𝑦𝑦∗ in e1. | |

Claim 2 In economy e1, (20) in Lemma A4 holds.

Proof of Claim 2. By Claim 1, 𝑌𝑌𝑌𝑌max = 𝑦𝑦𝑦𝑦∗. Since 𝑦𝑦𝑦𝑦∗ is the unique maximizer of
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦) − 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦), then∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦∗) < Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦∗) for all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≥ 𝑦𝑦𝑦𝑦∗ + 1. For all such 𝑦𝑦𝑦𝑦, since Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦∗) ≥ 0 for

all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 , we have
∑

𝑗𝑗𝑗𝑗 ∈𝐸𝐸𝐸𝐸 Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦∗) ≤
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦∗) for all 𝐸𝐸𝐸𝐸 ⊆ 𝑁𝑁𝑁𝑁 . Thus, for all 𝐸𝐸𝐸𝐸 ⊆ 𝑁𝑁𝑁𝑁 and all 𝑦𝑦𝑦𝑦 ∈ Y
such that 𝑦𝑦𝑦𝑦 ≥ 𝑦𝑦𝑦𝑦∗ + 1, ∑

𝑗𝑗𝑗𝑗 ∈𝐸𝐸𝐸𝐸
Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦∗) ≤

∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦∗) < Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦∗).

Hence, (20) in Lemma A4 holds. | |
Proof of Theorem 1(i). Suppose, to the contrary, that there exists a Nash equilibrium 𝜎𝜎𝜎𝜎 ∈ R𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦+ such

that 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) > 𝑦𝑦𝑦𝑦∗. By the efficiency of 𝑦𝑦𝑦𝑦∗,
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎), 𝑦𝑦𝑦𝑦∗) < Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎), 𝑦𝑦𝑦𝑦∗). Since 𝜎𝜎𝜎𝜎 is a Nash equilib-
rium, we obtainΔ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎), 𝑦𝑦𝑦𝑦∗) = ∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁
∑𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)

𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦∗+1 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 by (14). By these two conditions,

∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎), 𝑦𝑦𝑦𝑦∗) <∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁
∑𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)

𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦∗+1 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 . This condition implies that there must be 𝑙𝑙𝑙𝑙 ∈ 𝑁𝑁𝑁𝑁 such that 0 ≤ Δ𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎), 𝑦𝑦𝑦𝑦∗) <

∑𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦∗+1 𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑙𝑙𝑙𝑙
. Now, consider a deviation by agent 𝑙𝑙𝑙𝑙 such that she makes the same contributions from the

first to the 𝑦𝑦𝑦𝑦∗-th unit and she makes no contributions to the level over 𝑦𝑦𝑦𝑦∗. If we denote the level after
such a deviation by 𝑦𝑦𝑦𝑦 ′, then 𝑦𝑦𝑦𝑦 ′ ∈ {𝑦𝑦𝑦𝑦∗, . . . , 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) − 1}, and agent 𝑙𝑙𝑙𝑙 gains∑𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)

𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦∗+1 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑙𝑙𝑙𝑙
−Δ𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎), 𝑦𝑦𝑦𝑦 ′) > 0,11

which contradicts the supposition that 𝜎𝜎𝜎𝜎 is a Nash equilibrium.
Proof of Theorem 1(ii). Firstly, we show that there is a Nash equilibrium at which the project is

undertaken at the level 𝑦𝑦𝑦𝑦∗.

Claim 3 There exists 𝜎𝜎𝜎𝜎∗ ∈ R𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦+ such that

𝜎𝜎𝜎𝜎
∗𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = 0 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 and all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 > 𝑦𝑦𝑦𝑦∗,∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁

𝜎𝜎𝜎𝜎
∗𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) for all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦∗, (26)

and Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦) ≥
𝑦𝑦𝑦𝑦∗∑

𝑦𝑦𝑦𝑦=�̂�𝑦𝑦𝑦+1
𝜎𝜎𝜎𝜎
∗𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 and all 𝑦𝑦𝑦𝑦 ∈ Y such that 0 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦∗ − 1.

Proof of Claim 3. Obviously, we can set 𝜎𝜎𝜎𝜎∗𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = 0 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 and all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 > 𝑦𝑦𝑦𝑦∗.

We construct (𝜎𝜎𝜎𝜎∗𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 for all𝑦𝑦𝑦𝑦 such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦∗ by induction. We start with𝑦𝑦𝑦𝑦 = 𝑦𝑦𝑦𝑦∗. By Lemma

1, we obtain
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦∗ − 1) > Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦∗ − 1). Thus, there exists (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦∗

𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 ∈ R𝑛𝑛𝑛𝑛+ such that

∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁

𝜎𝜎𝜎𝜎
∗𝑦𝑦𝑦𝑦∗
𝑗𝑗𝑗𝑗 = Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦∗ − 1) and Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦∗ − 1) ≥ 𝜎𝜎𝜎𝜎

∗𝑦𝑦𝑦𝑦∗
𝑗𝑗𝑗𝑗 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 .

Given this (𝜎𝜎𝜎𝜎∗𝑦𝑦𝑦𝑦∗
𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 , we next construct (𝜎𝜎𝜎𝜎∗𝑦𝑦𝑦𝑦∗−1

𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 .

11Note that Δ𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎), 𝑦𝑦𝑦𝑦′) ≤ Δ𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎), 𝑦𝑦𝑦𝑦∗) <
∑𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)

𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦∗+1 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑙𝑙𝑙𝑙
.
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Let 𝑦𝑦𝑦𝑦 ∈ Y be such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦∗ − 1. Suppose that (𝜎𝜎𝜎𝜎∗𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 has been constructed for all 𝑦𝑦𝑦𝑦 ∈ Y

such that𝑦𝑦𝑦𝑦+1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦∗. We now construct (𝜎𝜎𝜎𝜎∗�̂�𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 . By Lemma 1,

∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦−1) > Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦−1).

This condition is equivalent to

∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦) +
∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) > Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦) + Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1)

=
𝑦𝑦𝑦𝑦∗∑

𝑦𝑦𝑦𝑦=�̂�𝑦𝑦𝑦+1

∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁

𝜎𝜎𝜎𝜎
∗𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 + Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) .

Thus,
∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁


Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦) −

𝑦𝑦𝑦𝑦∗∑
𝑦𝑦𝑦𝑦=�̂�𝑦𝑦𝑦+1

𝜎𝜎𝜎𝜎
∗𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗


+
∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) > Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1)

By the induction hypothesis, Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦) −
∑𝑦𝑦𝑦𝑦∗

𝑦𝑦𝑦𝑦=�̂�𝑦𝑦𝑦+1 𝜎𝜎𝜎𝜎
∗𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 ≥ 0 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 . Hence, there exists (𝜎𝜎𝜎𝜎∗�̂�𝑦𝑦𝑦

𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁
such that

∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁

𝜎𝜎𝜎𝜎
∗�̂�𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) and Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦 − 1) −

𝑦𝑦𝑦𝑦∗∑
𝑦𝑦𝑦𝑦=�̂�𝑦𝑦𝑦+1

𝜎𝜎𝜎𝜎
∗𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 ≥ 𝜎𝜎𝜎𝜎

∗�̂�𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 .

| |
At 𝜎𝜎𝜎𝜎∗, the project is undertaken at the level 𝑦𝑦𝑦𝑦∗. Note that 𝜎𝜎𝜎𝜎∗ satisfies all conditions in Lemma A3;

hence, it is a Nash equilibrium.

Claim 4 Every Nash equilibrium at which the project is undertaken at𝑦𝑦𝑦𝑦∗ is a strong Nash equilibrium
with transfers.

Proof of Claim 4. Firstly, note that (22) in Lemma A5 holds since Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) ≥ 0 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 and
all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≥ 1. Secondly, by Claim 2, (20) in Lemma A4 holds. Thus, by Lemma A5, every
Nash equilibrium at which the project is undertaken at the level 𝑦𝑦𝑦𝑦∗ is a strong Nash equilibrium with
transfers. | |

By Claim 4 and Remark 1, with and without transfers, every Nash equilibrium at which the project
is undertaken at 𝑦𝑦𝑦𝑦∗ is a strong Nash equilibrium and a coalition-proof Nash equilibrium. Note that by
the definitions of strong Nash equilibria with and without transfers, all strong Nash equilibria with and
without transfers must be Nash equilibria at which the project is undertaken at the level 𝑦𝑦𝑦𝑦∗. Hence,
the sets of these two strong Nash equilibria coincide with the set of Nash equilibria with efficient
implementation of the project.

Claim 5 All coalition-proof Nash equilibria with andwithout transfers are strongNash equilibria with
transfers.

Proof of Claim 5. Firstly, we show that every coalition-proof Nash equilibrium (without transfers) is
a strong Nash equilibrium with transfers. Since the sets of strong Nash equilibria with and without
transfers coincide, it is enough to show that without transfers every coalition-proof Nash equilibrium
is a strong Nash equilibrium. Suppose, to the contrary, that there exists a coalition-proof Nash equilib-
rium 𝜎𝜎𝜎𝜎 ∈ R𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦+ that is not a strong Nash equilibrium. Since the set of strong Nash equilibria coincides
with that of Nash equilibria at which 𝑦𝑦𝑦𝑦∗ is the level of the project, 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) must be an inefficient level of
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the project. Hence, 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) < 𝑦𝑦𝑦𝑦∗ and
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)) > Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)). Similar to the construction of
𝜎𝜎𝜎𝜎∗ in (26), we construct (𝜎𝜎𝜎𝜎 ′𝑦𝑦𝑦𝑦

𝑗𝑗𝑗𝑗 )𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 for all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) + 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦 as follows:

• 𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = 0 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 and all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 > 𝑦𝑦𝑦𝑦∗.

•
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) for all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) + 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦∗.

• Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦) ≥
∑𝑦𝑦𝑦𝑦∗

𝑦𝑦𝑦𝑦=�̂�𝑦𝑦𝑦+1 𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 and all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦∗ − 1.

• Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)) >
∑𝑦𝑦𝑦𝑦∗

𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)+1 𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 .

The last condition follows from
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)) > Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)). Combining (𝜎𝜎𝜎𝜎 ′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 )𝑦𝑦𝑦𝑦

𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)+1 with

(𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 )

𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)
𝑦𝑦𝑦𝑦=1 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 , we make a new strategy profile �̃�𝜎𝜎𝜎 ≡ ((𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦

𝑗𝑗𝑗𝑗 )
𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)
𝑦𝑦𝑦𝑦=1 , (𝜎𝜎𝜎𝜎 ′𝑦𝑦𝑦𝑦

𝑗𝑗𝑗𝑗 )𝑦𝑦𝑦𝑦
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)+1)𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 . At �̃�𝜎𝜎𝜎 , the

project is undertaken at the level 𝑦𝑦𝑦𝑦∗, and by Lemma A3 it is a Nash equilibrium. By Lemma A5, �̃�𝜎𝜎𝜎 is
a strong Nash equilibrium with transfers, and hence �̃�𝜎𝜎𝜎 is also coalition-proof without transfers. Since
Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗, 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)) >

∑𝑦𝑦𝑦𝑦∗

𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)+1 𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 , �̃�𝜎𝜎𝜎 Pareto dominates 𝜎𝜎𝜎𝜎 . By Definition 2, 𝜎𝜎𝜎𝜎 cannot be a

coalition-proof Nash equilibrium, which is a contradiction (see Remark 1(iii)).
Finally, note that we can show similarly that every coalition-proof Nash equilibrium with transfers

is a strong Nash equilibrium with transfers. | |
In conclusion, we obtain that the five equilibrium sets coincide. ■

Proof of Proposition 1. (⇐) We show that 𝜎𝜎𝜎𝜎∗ ∈ R𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦+ constructed in (8) is a Nash equilibrium. Firstly,
note that by (1), (5), and (9),

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦) ≤ Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦) for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 and all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≥ 𝑦𝑦𝑦𝑦∗. (27)

Considering the game Γ0 with N = 𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗ , we apply Lemma A3 to the game Γ |𝜎𝜎𝜎𝜎∗
𝑁𝑁𝑁𝑁 \𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗ . Clearly, we

have Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) ≥ 0 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗ and all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦∗; hence, (17) holds at
𝜎𝜎𝜎𝜎N = 𝜎𝜎𝜎𝜎∗

𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗ . By (27), (18) holds at 𝜎𝜎𝜎𝜎N = 𝜎𝜎𝜎𝜎∗
𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗ . (14)–(16) hold by the construction of 𝜎𝜎𝜎𝜎∗

𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗ . Thus, by
Lemma A3, 𝜎𝜎𝜎𝜎∗

𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗ is a Nash equilibrium of Γ |𝜎𝜎𝜎𝜎∗
𝑁𝑁𝑁𝑁 \𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗ .

By (27), no agent outside 𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗ is made better off if he unilaterally increases his contribution in such
a way that the project is undertaken over the level 𝑦𝑦𝑦𝑦∗. Also, no agent outside 𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗ is made better off
if he increases contributions to a level under 𝑦𝑦𝑦𝑦∗ because the contributions from agents in 𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦∗ already
cover the cost of 𝑦𝑦𝑦𝑦∗ units. In conclusion, 𝜎𝜎𝜎𝜎∗ is a Nash equilibrium of the unit-by-unit contribution
game.

(⇒) Suppose, to the contrary, that there exists a Nash equilibrium 𝜎𝜎𝜎𝜎 such that 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) = 𝑦𝑦𝑦𝑦∗ and that
Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗ + 1, 𝑦𝑦𝑦𝑦∗) > Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗ + 1, 𝑦𝑦𝑦𝑦∗) for some 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 . By applying Lemma A1, we have 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦∗+1

𝑖𝑖𝑖𝑖 = 0 for all
𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 . Clearly, if agent 𝑗𝑗𝑗𝑗 switches from 𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦∗+1
𝑗𝑗𝑗𝑗 = 0 to �̃�𝜎𝜎𝜎

𝑦𝑦𝑦𝑦∗+1
𝑗𝑗𝑗𝑗 = Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗ + 1, 𝑦𝑦𝑦𝑦∗), then his payoff increases

by Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦∗ + 1, 𝑦𝑦𝑦𝑦∗) − Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦∗ + 1, 𝑦𝑦𝑦𝑦∗) > 0, which is a contradiction. ■

Proof of Proposition 2. (⇒) Suppose that there exists a Nash equilibrium 𝜎𝜎𝜎𝜎 such that 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) > 𝑦𝑦𝑦𝑦∗ but
𝑌𝑌𝑌𝑌max ≤ 𝑦𝑦𝑦𝑦∗. Since 𝑌𝑌𝑌𝑌max < 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎), then 𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷) < 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) for all 𝐷𝐷𝐷𝐷 ⊆ 𝑁𝑁𝑁𝑁 . Note especially that 𝑌𝑌𝑌𝑌 (𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) ) < 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎).

Since 𝜎𝜎𝜎𝜎 is a Nash equilibrium, then 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)
𝑗𝑗𝑗𝑗 = 0 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 \𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) : if 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)

𝑗𝑗𝑗𝑗 > 0 for some 𝑗𝑗𝑗𝑗 ∈
𝑁𝑁𝑁𝑁 \𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) , agent 𝑗𝑗𝑗𝑗 is made better off by deviating from 𝜎𝜎𝜎𝜎 in a way that changes her contribution to the
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𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)-th unit to zero and takes the same contribution to the other units as 𝜎𝜎𝜎𝜎 𝑗𝑗𝑗𝑗 .12 Thus,

Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎), 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) − 1) =
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎 )

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)
𝑗𝑗𝑗𝑗 .

By the properties of the Nash equilibria in Lemma A2, we obtain Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎), 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) − 1) ≥ 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)
𝑗𝑗𝑗𝑗 for all

𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) , implying ∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎 )

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎), 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) − 1) ≥ Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎), 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) − 1) .

By the weak concavity of 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 and the weak convexity of 𝑐𝑐𝑐𝑐 , for all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎),
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎 )

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) ≥
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎 )

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎), 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) − 1) ≥ Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎), 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) − 1) ≥ Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) .

These inequalities imply that 𝑌𝑌𝑌𝑌 (𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) ) < 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) never holds; by these inequalities, if 𝑌𝑌𝑌𝑌 (𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) ) < 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎),
then 𝑌𝑌𝑌𝑌 (𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) ) cannot be a unique maximizer of

∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎 ) 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦) − 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦).

(⇐) Let 𝐷𝐷𝐷𝐷 ⊆ 𝑁𝑁𝑁𝑁 be such that 𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷) = 𝑌𝑌𝑌𝑌max. By the definition of 𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷),∑𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max, 𝑌𝑌𝑌𝑌max − 1) >
𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌max, 𝑌𝑌𝑌𝑌max−1). Since Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max, 𝑌𝑌𝑌𝑌max−1) < 0 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 \𝑁𝑁𝑁𝑁𝑌𝑌𝑌𝑌max , then

∑
𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷∩𝑁𝑁𝑁𝑁𝑌𝑌𝑌𝑌max Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max, 𝑌𝑌𝑌𝑌max−

1) > 𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌max, 𝑌𝑌𝑌𝑌max − 1). By this inequality, the weak concavity of 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 , and the weak convexity of 𝑐𝑐𝑐𝑐 ,

∑

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷∩𝑁𝑁𝑁𝑁𝑌𝑌𝑌𝑌max

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) > Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) for all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑌𝑌𝑌𝑌max.

By this condition, we can construct �̃�𝜎𝜎𝜎 ∈ R𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦+ such that

• If 𝑌𝑌𝑌𝑌max + 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦, then �̃�𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = 0 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 .

• If 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑌𝑌𝑌𝑌max, then �̃�𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = 0 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 \(𝐷𝐷𝐷𝐷 ∩ 𝑁𝑁𝑁𝑁𝑌𝑌𝑌𝑌max), 0 ≤ �̃�𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 ≤ Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) for all

𝑗𝑗𝑗𝑗 ∈ 𝐷𝐷𝐷𝐷 ∩ 𝑁𝑁𝑁𝑁𝑌𝑌𝑌𝑌max , and
∑

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷∩𝑁𝑁𝑁𝑁𝑌𝑌𝑌𝑌max �̃�𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1).

Similar to the method in the proof of Proposition 1, if we apply Lemma A3 to Γ |�̃�𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \(𝐷𝐷𝐷𝐷∩𝑁𝑁𝑁𝑁𝑌𝑌𝑌𝑌max ) , we can
show that �̃�𝜎𝜎𝜎 is a Nash equilibrium of Γ.13 ■

Proof of Lemma 5. Let𝑀𝑀𝑀𝑀 ⊆ 𝑁𝑁𝑁𝑁 be such that 𝑌𝑌𝑌𝑌 (𝑀𝑀𝑀𝑀) = 𝑌𝑌𝑌𝑌max. Since {𝑌𝑌𝑌𝑌max} = argmax𝑦𝑦𝑦𝑦∈Y
∑

𝑗𝑗𝑗𝑗 ∈𝑀𝑀𝑀𝑀 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦) −
𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦), ∑

𝑗𝑗𝑗𝑗 ∈𝑀𝑀𝑀𝑀
Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max, 𝑌𝑌𝑌𝑌max − 1) > Δ𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌max, 𝑌𝑌𝑌𝑌max − 1) . (28)

Excluding agents 𝑗𝑗𝑗𝑗 ∈ 𝑀𝑀𝑀𝑀 , if any, such thatΔ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max, 𝑌𝑌𝑌𝑌max−1) ≤ 0, wemake𝑀𝑀𝑀𝑀+ ≡ { 𝑗𝑗𝑗𝑗 ∈ 𝑀𝑀𝑀𝑀 | Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑌𝑌𝑌𝑌max, 𝑌𝑌𝑌𝑌max−
1) > 0}. Then, by (28), we obtain

Δ𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌max, 𝑌𝑌𝑌𝑌max − 1) <
∑
𝑗𝑗𝑗𝑗 ∈𝑀𝑀𝑀𝑀

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max, 𝑌𝑌𝑌𝑌max − 1) ≤
∑
𝑗𝑗𝑗𝑗 ∈𝑀𝑀𝑀𝑀+

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max, 𝑌𝑌𝑌𝑌max − 1) .

12By this deviation, the level of the project decreases to𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)−1 and 𝑗𝑗𝑗𝑗 ’s payoff increases by−Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎), 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)−1)+𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎)𝑗𝑗𝑗𝑗 > 0.
13Note that Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max + 1, 𝑌𝑌𝑌𝑌max) ≤ Δ𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌max + 1, 𝑌𝑌𝑌𝑌max) for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 since 𝑌𝑌𝑌𝑌max = max𝐷𝐷𝐷𝐷′ ⊆𝑁𝑁𝑁𝑁 𝑌𝑌𝑌𝑌 (𝐷𝐷𝐷𝐷 ′).
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By the weak concavity of 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 and the weakly convexity of 𝑐𝑐𝑐𝑐 ,

∑
𝑗𝑗𝑗𝑗 ∈𝑀𝑀𝑀𝑀+

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) > Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) for all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑌𝑌𝑌𝑌max. (29)

By the weak concavity of 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 for all 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 , if Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max𝑦𝑦 𝑌𝑌𝑌𝑌max − 1) > 0, then Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 1) > 0 for all
𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑌𝑌𝑌𝑌max. Hence,𝑀𝑀𝑀𝑀+ is a set that satisfies (10) and (11). ■

Proof of Proposition 3. We show that 𝜎𝜎𝜎𝜎 , constructed in (12), is coalition-proof with and without
transfers. Suppose that a coalition 𝐷𝐷𝐷𝐷 ⊆ 𝑁𝑁𝑁𝑁 deviates from 𝜎𝜎𝜎𝜎𝐷𝐷𝐷𝐷 to 𝜎𝜎𝜎𝜎 ′

𝐷𝐷𝐷𝐷 ∈ R |𝐷𝐷𝐷𝐷 |𝑦𝑦𝑦𝑦
+ . Let 𝑦𝑦𝑦𝑦 ′ ≡ 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎 ′

𝐷𝐷𝐷𝐷 𝑦𝑦 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 ): 𝑦𝑦𝑦𝑦 ′

is the level of the public project attained by this deviation. Trivially, note that the deviation is never
profitable if 𝑦𝑦𝑦𝑦 ′ = 𝑌𝑌𝑌𝑌max.

Claim 6 Suppose that 𝑦𝑦𝑦𝑦 ′ ≥ 𝑌𝑌𝑌𝑌max + 1. Then,
∑

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎) ≥
∑

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷 𝑦𝑦 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 ) and there is 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 such

that 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎) ≥ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷 𝑦𝑦 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 ).

Proof of Claim 6. We prove this claim by Lemma A4. We consider the case of Γ0 = Γ. Let 𝐸𝐸𝐸𝐸 ⊆ 𝑁𝑁𝑁𝑁 . Since
𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸) is the unique maximizer of

∑
𝑗𝑗𝑗𝑗 ∈𝐸𝐸𝐸𝐸 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦) − 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦),

∑
𝑗𝑗𝑗𝑗 ∈𝐸𝐸𝐸𝐸

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸) + 1𝑦𝑦 𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸)) < Δ𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸) + 1𝑦𝑦 𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸)) .

Thus, by the weak concavity of 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 and the weak convexity of 𝑐𝑐𝑐𝑐 , for all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≥ 𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸),
∑
𝑗𝑗𝑗𝑗 ∈𝐸𝐸𝐸𝐸

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 + 1𝑦𝑦 𝑦𝑦𝑦𝑦) ≤
∑
𝑗𝑗𝑗𝑗 ∈𝐸𝐸𝐸𝐸

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸) + 1𝑦𝑦 𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸)) < 𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸) + 1𝑦𝑦 𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸)) ≤ 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 + 1𝑦𝑦 𝑦𝑦𝑦𝑦). (30)

Note that by the definition of 𝑌𝑌𝑌𝑌max, 𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸) ≤ 𝑌𝑌𝑌𝑌max. By this condition and (30),

∑
𝑗𝑗𝑗𝑗 ∈𝐸𝐸𝐸𝐸

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦𝑦𝑦𝑌𝑌𝑌𝑌max) < 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦𝑦𝑦𝑌𝑌𝑌𝑌max) (31)

for all𝑦𝑦𝑦𝑦 ∈ Y such that𝑦𝑦𝑦𝑦 ≥ 𝑌𝑌𝑌𝑌max+1. Thus, in Γ, (20) holds. By LemmaA4,
∑

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎) ≥
∑

𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷 𝑦𝑦 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 ),

implying that there exists 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 such that 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎) ≥ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷 𝑦𝑦 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 ). | |

Firstly, we show that 𝜎𝜎𝜎𝜎 is a coalition-proof Nash equilibrium (without transfers). Suppose, to the
contrary, that 𝜎𝜎𝜎𝜎 is not coalition-proof. Then, there exist a coalition 𝐷𝐷𝐷𝐷 ⊆ 𝑁𝑁𝑁𝑁 and 𝜎𝜎𝜎𝜎 ′

𝐷𝐷𝐷𝐷 ∈ R |𝐷𝐷𝐷𝐷 |𝑦𝑦𝑦𝑦
+ such that

𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎) < 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷 𝑦𝑦 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 ) for all 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 , and 𝜎𝜎𝜎𝜎 ′

𝐷𝐷𝐷𝐷 is a coalition-proof Nash equilibrium of Γ |𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 . By Claim
6, if 𝑦𝑦𝑦𝑦 ′ ≥ 𝑌𝑌𝑌𝑌max + 1, then it is impossible for the deviation by 𝐷𝐷𝐷𝐷 to be profitable, irrespective of the
self-enforcing property of 𝜎𝜎𝜎𝜎 ′

𝐷𝐷𝐷𝐷 . Hence, we need to consider the case of 𝑦𝑦𝑦𝑦 ′ ≤ 𝑌𝑌𝑌𝑌max − 1.

Claim 7 Suppose that 𝑦𝑦𝑦𝑦 ′ ≤ 𝑌𝑌𝑌𝑌max − 1. In the restricted game Γ | (𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 𝑦𝑦 𝜎𝜎𝜎𝜎
′
𝐷𝐷𝐷𝐷\M),

(7. i) ((𝜎𝜎𝜎𝜎 ′𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 )𝑦𝑦𝑦𝑦

′

𝑦𝑦𝑦𝑦=1𝑦𝑦 (𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 )

𝑦𝑦𝑦𝑦
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1)𝑖𝑖𝑖𝑖∈𝐷𝐷𝐷𝐷∩M , where (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦

𝑖𝑖𝑖𝑖 )
𝑦𝑦𝑦𝑦
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1 is defined in (12) for all 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 ∩ M, is a Nash

equilibrium at which the project is undertaken at the level 𝑌𝑌𝑌𝑌max,

(7. ii) every Nash equilibrium at which the project is undertaken at the level 𝑌𝑌𝑌𝑌max is a strong Nash
equilibrium with transfers, and
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(7. iii) 𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷∩M is strictly Pareto dominated by ((𝜎𝜎𝜎𝜎 ′𝑦𝑦𝑦𝑦

𝑖𝑖𝑖𝑖 )𝑦𝑦𝑦𝑦
′

𝑦𝑦𝑦𝑦=1, (𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 )

𝑦𝑦𝑦𝑦
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1)𝑖𝑖𝑖𝑖∈𝐷𝐷𝐷𝐷∩M .

Proof of Claim 7. For notational simplicity, denote 𝜎𝜎𝜎𝜎 ′
𝑁𝑁𝑁𝑁 \(𝐷𝐷𝐷𝐷∩M) ≡ (𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 , 𝜎𝜎𝜎𝜎

′
𝐷𝐷𝐷𝐷\M) and

𝜎𝜎𝜎𝜎∗∗
𝐷𝐷𝐷𝐷∩M ≡ ((𝜎𝜎𝜎𝜎 ′𝑦𝑦𝑦𝑦

𝑖𝑖𝑖𝑖 )𝑦𝑦𝑦𝑦
′

𝑦𝑦𝑦𝑦=1, (𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 )

𝑦𝑦𝑦𝑦
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1)𝑖𝑖𝑖𝑖∈𝐷𝐷𝐷𝐷∩M .

If the level of the public project declines to 𝑦𝑦𝑦𝑦 ′ by this deviation, some agents in M join in this
deviation; otherwise, the level of the project never decreases (note that at 𝜎𝜎𝜎𝜎 , no agent outside M
contributes). Hence, 𝐷𝐷𝐷𝐷 ∩M ≠ ∅.

Proof of (7.i) We apply Lemma A3 to show that 𝜎𝜎𝜎𝜎∗∗
𝐷𝐷𝐷𝐷∩M is a Nash equilibrium, considering Γ0 =

Γ |𝜎𝜎𝜎𝜎 ′
𝑁𝑁𝑁𝑁 \(𝐷𝐷𝐷𝐷∩M) ; that is,N in Lemma A3 is equal to 𝐷𝐷𝐷𝐷 ∩M. Obviously, at 𝜎𝜎𝜎𝜎∗∗

𝐷𝐷𝐷𝐷∩M , the project is undertaken
at 𝑌𝑌𝑌𝑌max in Γ |𝜎𝜎𝜎𝜎 ′

𝑁𝑁𝑁𝑁 \(𝐷𝐷𝐷𝐷∩M) . By (10), (17) holds at 𝜎𝜎𝜎𝜎N = 𝜎𝜎𝜎𝜎∗∗
𝐷𝐷𝐷𝐷∩M in Γ |𝜎𝜎𝜎𝜎 ′

𝑁𝑁𝑁𝑁 \(𝐷𝐷𝐷𝐷∩M) . (31) implies that (18) holds
at 𝜎𝜎𝜎𝜎N = 𝜎𝜎𝜎𝜎∗∗

𝐷𝐷𝐷𝐷∩M in this game. By the fact that 𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷 must be a Nash equilibrium in Γ |𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 , Lemmas A1

and A2, and the construction of 𝜎𝜎𝜎𝜎 in (12), 𝜎𝜎𝜎𝜎∗∗
𝐷𝐷𝐷𝐷∩M satisfies (14)–(16) in Γ |𝜎𝜎𝜎𝜎 ′

𝑁𝑁𝑁𝑁 \(𝐷𝐷𝐷𝐷∩M) . Hence, by Lemma
A3, 𝜎𝜎𝜎𝜎∗∗

𝐷𝐷𝐷𝐷∩M is a Nash equilibrium.
Proof of (7.ii) We show this by Lemma A5. We consider Γ0 in which N = D ∩ M and V𝑗𝑗𝑗𝑗 (•) =

𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (•, 𝜎𝜎𝜎𝜎 ′
𝑁𝑁𝑁𝑁 \(𝐷𝐷𝐷𝐷∩M)) for all 𝑗𝑗𝑗𝑗 ∈ 𝐷𝐷𝐷𝐷 ∩M. By (10) of Lemma 5, we obtain Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) > 0 for all 𝑗𝑗𝑗𝑗 ∈ 𝐷𝐷𝐷𝐷 ∩M

and all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑌𝑌𝑌𝑌max. Hence, (22) holds.
We now prove that (20) holds. Let 𝐸𝐸𝐸𝐸 ⊆ 𝐷𝐷𝐷𝐷 ∩M. In a way similar to (30),

∑
𝑗𝑗𝑗𝑗 ∈𝐸𝐸𝐸𝐸

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦) ≤
∑
𝑗𝑗𝑗𝑗 ∈𝐸𝐸𝐸𝐸

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸) + 1, 𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸)) < 𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸) + 1, 𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸)) ≤ 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦).

for all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≥ 𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸). In a similar way to (31),

∑
𝑗𝑗𝑗𝑗 ∈𝐸𝐸𝐸𝐸

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑌𝑌𝑌𝑌max) < 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑌𝑌𝑌𝑌max).

for all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≥ 𝑌𝑌𝑌𝑌max + 1. Thus, (20) holds. By Lemma A5, every Nash equilibrium at which
the project is undertaken at the level 𝑌𝑌𝑌𝑌max is a strong Nash equilibrium with transfers in Γ |𝜎𝜎𝜎𝜎 ′

𝑁𝑁𝑁𝑁 \(𝐷𝐷𝐷𝐷∩M) .

Proof of (7.iii) For all 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 ∩M, 𝑖𝑖𝑖𝑖’s payoff at 𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷∩M is 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 ′) −∑𝑦𝑦𝑦𝑦′

𝑦𝑦𝑦𝑦=1 𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 , while his payoff at 𝜎𝜎𝜎𝜎∗∗

𝐷𝐷𝐷𝐷∩M
is

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑌𝑌𝑌𝑌max) −
𝑦𝑦𝑦𝑦′∑
𝑦𝑦𝑦𝑦=1

𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 −

𝑌𝑌𝑌𝑌max∑
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 ′) −

𝑦𝑦𝑦𝑦′∑
𝑦𝑦𝑦𝑦=1

𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 + Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑌𝑌𝑌𝑌max, 𝑦𝑦𝑦𝑦 ′) −

𝑌𝑌𝑌𝑌max∑
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 .

By (13), Δ𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑌𝑌𝑌𝑌max, 𝑦𝑦𝑦𝑦 ′) −∑𝑌𝑌𝑌𝑌max

𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 > 0 for all 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 ∩M; hence,

𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑦𝑦𝑦𝑦 ′) −
𝑦𝑦𝑦𝑦′∑
𝑦𝑦𝑦𝑦=1

𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 < 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (𝑌𝑌𝑌𝑌max) −

𝑦𝑦𝑦𝑦′∑
𝑦𝑦𝑦𝑦=1

𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 −

𝑌𝑌𝑌𝑌max∑
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 (32)

for all 𝑖𝑖𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷 ∩M. | |

By (7.i) and (7.ii) of Claim 7, 𝜎𝜎𝜎𝜎∗∗
𝐷𝐷𝐷𝐷∩M is a strong Nash equilibrium with transfers of Γ | (𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 , 𝜎𝜎𝜎𝜎

′
𝐷𝐷𝐷𝐷\M);

hence, it is a coalition-proof Nash equilibrium of the restricted game. Note that by the definition
of coalition-proof Nash equilibria, no coalition-proof Nash equilibrium is Pareto-dominated by other
coalition-proof Nash equilibria (see Remark 1(iii)). Thus, by (7.iii) of this claim, 𝜎𝜎𝜎𝜎 ′

𝐷𝐷𝐷𝐷∩M is not coalition-
proof in Γ |𝜎𝜎𝜎𝜎 ′

𝑁𝑁𝑁𝑁 \(𝐷𝐷𝐷𝐷∩M) , which in turn implies that 𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷 is not a coalition-proof Nash equilibrium of

48

Undertaking nonharmful or harmful public projects through unit-by-unit contribution: Coordination and Pareto effciency 



Γ |𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 .14 This is a contradiction. Thus, by Claims 6 and 7, 𝜎𝜎𝜎𝜎 is a coalition-proof Nash equilibrium
of Γ.

Secondly, we can similarly show that 𝜎𝜎𝜎𝜎 is a coalition-proof Nash equilibriumwith transfers. We can
prove that if 𝜎𝜎𝜎𝜎 ′

𝐷𝐷𝐷𝐷 is a coalition-proof Nash equilibriumwith transfers of Γ |𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 , then in Γ | (𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 , 𝜎𝜎𝜎𝜎
′
𝐷𝐷𝐷𝐷\M),

𝜎𝜎𝜎𝜎∗∗
𝐷𝐷𝐷𝐷∩M is a strong Nash equilibrium with transfers at which the project is undertaken at the level 𝑌𝑌𝑌𝑌max

in a similar way to (7.ii) of Claim 7. Moreover,

∑
𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷∩M

(
𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 ′) −

𝑦𝑦𝑦𝑦′∑
𝑦𝑦𝑦𝑦=1

𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗

)
<

∑
𝑗𝑗𝑗𝑗 ∈𝐷𝐷𝐷𝐷∩M

(
𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max) −

𝑦𝑦𝑦𝑦′∑
𝑦𝑦𝑦𝑦=1

𝜎𝜎𝜎𝜎
′𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 −

𝑌𝑌𝑌𝑌max∑
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦′+1

𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗

)
,

which is obtained by summing (32) over 𝑗𝑗𝑗𝑗 ∈ 𝐷𝐷𝐷𝐷 ∩M. By applying the reasoning in Remark 1(iv), 𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷 is

not coalition-proof with transfers in Γ |𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 . Hence, 𝜎𝜎𝜎𝜎 is also coalition-proof with transfers. ■

Proof of Proposition 4. Firstly, note that by Lemma A1, since �̂�𝜎𝜎𝜎 is a Nash equilibrium,
∑

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 �̂�𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 =

Δ𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) for all 𝑦𝑦𝑦𝑦 ∈ Y such that 1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎) and ∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 �̂�𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 = 0 for all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎) + 1 ≤

𝑦𝑦𝑦𝑦 ≤ 𝑌𝑌𝑌𝑌max. Denote 𝜎𝜎𝜎𝜎∗∗
M ≡ ((�̂�𝜎𝜎𝜎𝑦𝑦𝑦𝑦

𝑖𝑖𝑖𝑖 )
𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎)
𝑦𝑦𝑦𝑦=1 , (𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦

𝑖𝑖𝑖𝑖 )
𝑦𝑦𝑦𝑦
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎)+1)𝑖𝑖𝑖𝑖∈M , in which ((𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦

𝑖𝑖𝑖𝑖 )
𝑦𝑦𝑦𝑦
𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎)+1)𝑖𝑖𝑖𝑖∈M is defined in (12). As

in (7.i) of Claim 7, 𝜎𝜎𝜎𝜎∗∗
M is shown to be a Nash equilibrium at which the project is undertaken at 𝑌𝑌𝑌𝑌max in

Γ |�̂�𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \M .

Claim 8 In Γ |�̂�𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \M , (8.i) 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (𝜎𝜎𝜎𝜎∗∗
M, �̂�𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \M) > 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (�̂�𝜎𝜎𝜎) for all 𝑗𝑗𝑗𝑗 ∈ M and (8.ii) 𝜎𝜎𝜎𝜎∗∗

M is a strong Nash equilib-
rium with transfers.

Proof of Claim 8. The proof of (8.i) is similar to that of (7.iii) of Claim 7. Note that Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌max, 𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎)) >∑𝑌𝑌𝑌𝑌max

𝑦𝑦𝑦𝑦=𝑦𝑦𝑦𝑦 (�̂�𝜎𝜎𝜎)+1 𝜎𝜎𝜎𝜎
𝑦𝑦𝑦𝑦
𝑗𝑗𝑗𝑗 for all 𝑗𝑗𝑗𝑗 ∈ M (see (13)).

(8.ii) is shown by Lemma A5. We consider Γ0 such that N = M and V𝑗𝑗𝑗𝑗 (•) = 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 (•, �̂�𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \M) for
all 𝑗𝑗𝑗𝑗 ∈ M. By (10) of Lemma 5, we have Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 − 1) > 0 for all 𝑗𝑗𝑗𝑗 ∈ M and all 𝑦𝑦𝑦𝑦 ∈ Y such that
1 ≤ 𝑦𝑦𝑦𝑦 ≤ 𝑌𝑌𝑌𝑌max. Hence, (22) holds.

We now prove that (20) holds. Let 𝐸𝐸𝐸𝐸 ⊆ M. Since 𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸) uniquely maximizes
∑

𝑗𝑗𝑗𝑗 ∈𝐸𝐸𝐸𝐸 𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦) − 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦),
∑
𝑗𝑗𝑗𝑗 ∈𝐸𝐸𝐸𝐸

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸) + 1, 𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸)) < Δ𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸) + 1, 𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸)) .

By (1) and (5), for all 𝑦𝑦𝑦𝑦 ∈ Y such that 𝑦𝑦𝑦𝑦 ≥ 𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸),
∑
𝑗𝑗𝑗𝑗 ∈𝐸𝐸𝐸𝐸

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦) ≤
∑
𝑗𝑗𝑗𝑗 ∈𝐸𝐸𝐸𝐸

Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸) + 1, 𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸)) < 𝑐𝑐𝑐𝑐 (𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸) + 1, 𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸)) ≤ 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦 + 1, 𝑦𝑦𝑦𝑦).

By this condition and 𝑌𝑌𝑌𝑌 (𝐸𝐸𝐸𝐸) ≤ 𝑌𝑌𝑌𝑌max, we obtain
∑

𝑗𝑗𝑗𝑗 ∈𝐸𝐸𝐸𝐸 Δ𝑢𝑢𝑢𝑢 𝑗𝑗𝑗𝑗 (𝑦𝑦𝑦𝑦,𝑌𝑌𝑌𝑌max) < 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦,𝑌𝑌𝑌𝑌max) for all 𝑦𝑦𝑦𝑦 ∈ Y such that
𝑦𝑦𝑦𝑦 ≥ 𝑌𝑌𝑌𝑌max + 1. Thus, (20) holds.

By Lemma A5, every Nash equilibrium at which the project is undertaken at the level 𝑌𝑌𝑌𝑌max is
a strong Nash equilibrium with transfers. Since 𝜎𝜎𝜎𝜎∗∗

M is a Nash equilibrium at which the project is
undertaken at 𝑌𝑌𝑌𝑌max, it is also a strong Nash equilibrium with transfers. | |

14Note that if 𝜎𝜎𝜎𝜎 ′
𝐷𝐷𝐷𝐷 is a coalition-proof Nash equilibrium of Γ |𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 \𝐷𝐷𝐷𝐷 , then 𝜎𝜎𝜎𝜎 ′

𝐸𝐸𝐸𝐸 is also coalition-proof of the corresponding
restricted game for all 𝐸𝐸𝐸𝐸 ⊊ 𝐷𝐷𝐷𝐷 .
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We can show by Claim 8 that �̂�𝜎𝜎𝜎 is not coalition-proof with or without transfers in Γ, similarly with
the last two paragraphs of the proof of Proposition 3. ■

Proof of Theorem 3. Suppose that 𝑌𝑌𝑌𝑌max = 𝑦𝑦𝑦𝑦∗. Then, by Propositions 3 and 4, the level of the project
supported at coalition-proof Nash equilibria with and without transfers is 𝑦𝑦𝑦𝑦∗ or higher. However, by
Theorem 2(i), there exists no Nash equilibrium at which the project is undertaken over 𝑦𝑦𝑦𝑦∗. Hence, 𝑦𝑦𝑦𝑦∗

is a unique level of the project supported at coalition-proof Nash equilibria.
Suppose that 𝑌𝑌𝑌𝑌max > 𝑦𝑦𝑦𝑦∗. By Proposition 3, there exists a coalition-proof Nash equilibrium at which

the project is undertaken over 𝑦𝑦𝑦𝑦∗. By Proposition 4, even if there exist Nash equilibria that support
a level that is less than or equal to 𝑦𝑦𝑦𝑦∗, they are never coalition-proof with or without transfers in Γ.
Hence, the public project is excessively undertaken at the coalition-proof Nash equilibria. ■

Proof of Proposition 5. It is enough to provide an example of the economy. We reconsider the
economy specified in Example 1. Remember that Y = {0, 1, 2}, 𝑐𝑐𝑐𝑐 (𝑦𝑦𝑦𝑦) = 10𝑦𝑦𝑦𝑦 for all 𝑦𝑦𝑦𝑦 ∈ Y, 𝑁𝑁𝑁𝑁 = {1, 2},
𝑢𝑢𝑢𝑢1(1) = 4, 𝑢𝑢𝑢𝑢1(2) = 1, 𝑢𝑢𝑢𝑢2(1) = 12, 𝑢𝑢𝑢𝑢2(2) = 23, and 𝑦𝑦𝑦𝑦∗ = 1. We show that no 𝜎𝜎𝜎𝜎 ∈ ∏

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 such that
𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) = 1 is a Nash equilibrium. Take a strategy profile 𝜎𝜎𝜎𝜎 with 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) = 1. Note that

∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝜎𝜎𝜎𝜎2

𝑗𝑗𝑗𝑗 < 10, since
𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) = 1. We obtain 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎) = 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (1) −

∑2
𝑦𝑦𝑦𝑦=1 𝑡𝑡𝑡𝑡

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 (𝜎𝜎𝜎𝜎

𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 ) for each 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 .

Firstly, suppose that 𝜎𝜎𝜎𝜎2
𝑖𝑖𝑖𝑖 > 0 for some 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 . Then, the payoff to agent 𝑖𝑖𝑖𝑖 at 𝜎𝜎𝜎𝜎 is 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (1) − 𝑡𝑡𝑡𝑡11 (𝜎𝜎𝜎𝜎1

𝑖𝑖𝑖𝑖 ) − 𝜎𝜎𝜎𝜎2
𝑖𝑖𝑖𝑖 .

If agent 𝑖𝑖𝑖𝑖 switches from 𝜎𝜎𝜎𝜎2
𝑖𝑖𝑖𝑖 > 0 to 𝜎𝜎𝜎𝜎2′

𝑖𝑖𝑖𝑖 = 0 keeping the contribution to the first unit the same, then she
can still enjoy the public project at one unit by

∑
𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝜎𝜎𝜎𝜎2

𝑗𝑗𝑗𝑗 < 10 and receives the payoff 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (1) − 𝑡𝑡𝑡𝑡11 (𝜎𝜎𝜎𝜎1
𝑖𝑖𝑖𝑖 ),

which is greater than the payoff before the switch.
Secondly, suppose that 𝜎𝜎𝜎𝜎2

𝑗𝑗𝑗𝑗 = 0 for each 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 . Then, if agent 2 keeps 𝜎𝜎𝜎𝜎1
2 the same and changes a

contribution to the second unit from 𝜎𝜎𝜎𝜎2
2 to �̃�𝜎𝜎𝜎2

2 = Δ𝑐𝑐𝑐𝑐 (2, 1), then the second unit is provided and he is
made better off (note that Δ𝑢𝑢𝑢𝑢2(2, 1) > Δ𝑐𝑐𝑐𝑐 (2, 1)).

Finally, suppose that 𝜎𝜎𝜎𝜎2
𝑗𝑗𝑗𝑗 ≤ 0 for each 𝑗𝑗𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁 and 𝜎𝜎𝜎𝜎2

𝑖𝑖𝑖𝑖 < 0 for at least one 𝑖𝑖𝑖𝑖 ∈ 𝑁𝑁𝑁𝑁 . Suppose that agent
𝑖𝑖𝑖𝑖 switches from 𝜎𝜎𝜎𝜎2

𝑖𝑖𝑖𝑖 < 0 to 𝜎𝜎𝜎𝜎2′
𝑖𝑖𝑖𝑖 = 0 keeping the contribution to the first unit the same. Then, after the

switch, the project level is one unit since 𝜎𝜎𝜎𝜎2
𝑖𝑖𝑖𝑖 + 𝜎𝜎𝜎𝜎2

𝑘𝑘𝑘𝑘
< 𝜎𝜎𝜎𝜎2

𝑘𝑘𝑘𝑘
≤ 0 < 10, where 𝑘𝑘𝑘𝑘 ≠ 𝑖𝑖𝑖𝑖 . Thus, after the switch,

agent 1 can still enjoy one unit of the project and receives the payoff 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (1) − 𝑡𝑡𝑡𝑡11 (𝜎𝜎𝜎𝜎1
𝑖𝑖𝑖𝑖 ), which is greater

than 𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 (1) − 𝑡𝑡𝑡𝑡11 (𝜎𝜎𝜎𝜎1
𝑖𝑖𝑖𝑖 ) − 𝑡𝑡𝑡𝑡21 (𝜎𝜎𝜎𝜎2

𝑖𝑖𝑖𝑖 ).
In conclusion, no 𝜎𝜎𝜎𝜎 ∈ ∏

𝑗𝑗𝑗𝑗 ∈𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆 𝑗𝑗𝑗𝑗 such that 𝑦𝑦𝑦𝑦 (𝜎𝜎𝜎𝜎) = 1 is a Nash equilibrium. ■

Appendix C: Example of coalition-proofness

Consider the three-player game in Table 1.15 We assume that the payoffs in this table are transferable
among members of a coalition, if one forms. There are two pure-strategy Nash equilibria: (𝑥𝑥𝑥𝑥2, 𝑦𝑦𝑦𝑦2, 𝑧𝑧𝑧𝑧1)
and (𝑥𝑥𝑥𝑥1, 𝑦𝑦𝑦𝑦1, 𝑧𝑧𝑧𝑧2). The former is a coalition-proof Nash equilibrium, but not one with transfers. The latter
is a coalition-proof Nash equilibrium with transfers, but not a coalition-proof Nash equilibrium. Thus,
the two sets of coalition-proof Nash equilibria are nonempty and disjoint.

15In this matrix, agent 1 chooses rows, agent 2 chooses columns, and agent 3 chooses matrices. The first entry in each cell
is agent 1’s payoff, the second is agent 2’s, and the third is agent 3’s.
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Table 1: Appendix C
𝑦𝑦𝑦𝑦1 𝑦𝑦𝑦𝑦2

𝑥𝑥𝑥𝑥1 4.5, 2, 0 1, 1, 1
𝑥𝑥𝑥𝑥2 1, 1, 1 3, 3, 5

𝑧𝑧𝑧𝑧1

𝑦𝑦𝑦𝑦1 𝑦𝑦𝑦𝑦2
𝑥𝑥𝑥𝑥1 2, 2, 3 1, 1, 3
𝑥𝑥𝑥𝑥2 1, 1, 3 0, 0, 3
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